Pregunta
upstudy study bank question image url

Given the equation below, find the slope, \( y \)-intercept, and graph the lir \( y=\frac{1}{6} x-3 \) Slope \( (m): \square \) \( y \)-intercept (b):

Ask by Vega Brooks. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Slope \( (m) \):** \( \frac{1}{6} \) - **\( y \)-intercept \( (b) \):** \( -3 \)

Solución

Sure! Let's analyze the equation and extract the necessary information: ### Given Equation: \[ y = \frac{1}{6}x - 3 \] This equation is in the **slope-intercept form**, which is: \[ y = mx + b \] where: - \( m \) is the **slope** of the line. - \( b \) is the **\( y \)-intercept** (the point where the line crosses the \( y \)-axis). ### 1. Identifying the Slope and \( y \)-Intercept - **Slope (\( m \)):** \[ m = \frac{1}{6} \] - **\( y \)-Intercept (\( b \)):** \[ b = -3 \] So, filling in the blanks: - **Slope \( (m): \)** \( \frac{1}{6} \) - **\( y \)-intercept \( (b): \)** \( -3 \) ### 2. Graphing the Line To graph the line \( y = \frac{1}{6}x - 3 \), follow these steps: 1. **Plot the \( y \)-Intercept:** - Start at the point \( (0, -3) \) on the \( y \)-axis. 2. **Use the Slope to Find Another Point:** - The slope \( \frac{1}{6} \) means "rise over run," which is \( 1 \) unit up for every \( 6 \) units to the right. - From \( (0, -3) \), move **6 units to the right** to \( x = 6 \), and then **1 unit up** to \( y = -2 \). - Plot the second point at \( (6, -2) \). 3. **Draw the Line:** - Connect the two points with a straight line extending in both directions. ### Visual Representation: While I can't provide a graphical plot here, here's a simple sketch of how the line would appear: ``` y | 5 | 4 | 3 | 2 | • (6, -2) 1 | 0 |____________________________ x -1| -2| -3|• (0, -3) -4| -5| ``` - **Point (0, -3):** Where the line crosses the \( y \)-axis. - **Point (6, -2):** Another point on the line based on the slope. - The line extends infinitely in both directions through these points. ### Summary - **Slope \( (m) \):** \( \frac{1}{6} \) - **\( y \)-Intercept \( (b) \):** \( -3 \) This means the line rises gently as it moves from left to right, crossing the \( y \)-axis at \( -3 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The slope \( (m) \) of the equation \( y=\frac{1}{6} x-3 \) is \( \frac{1}{6} \). This means that for every 6 units you move horizontally to the right, the line will rise 1 unit vertically. It's a gentle incline, making it easy to visualize! The \( y \)-intercept \( (b) \) is \( -3 \). This is the point where the line crosses the \( y \)-axis. So when \( x=0 \), \( y \) will be \( -3 \). If you're graphing it, place a point at (0, -3) and use the slope to draw the line! Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad