Pregunta
upstudy study bank question image url

Sketch the graph of the function. \[ g(x)=\left\{\begin{array}{ll}x+2, & x \leq-4 \\ \frac{1}{2} x-6, & x>-4\end{array}\right. \]

Ask by Pope Garza. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the graph of the function: \[ g(x) = \begin{cases} x + 2, & \text{if } x \leq -4 \\ \frac{1}{2}x - 6, & \text{if } x > -4 \end{cases} \] 1. **Plot the first piece (\( x + 2 \))**: - At \( x = -4 \), \( g(-4) = -2 \). Plot a closed circle at \((-4, -2)\). - Draw a straight line with a slope of 1 extending to the left. 2. **Plot the second piece (\( \frac{1}{2}x - 6 \))**: - At \( x = -4 \), \( g(-4) = -8 \). Plot an open circle at \((-4, -8)\). - Draw a straight line with a slope of \( \frac{1}{2} \) extending to the right. 3. **Indicate the jump discontinuity** at \( x = -4 \) with the closed and open circles. The graph consists of two straight lines meeting at \( x = -4 \) with a jump, showing the piecewise nature of the function.

Solución

To sketch the graph of the piecewise function: \[ g(x) = \begin{cases} x + 2, & \text{if } x \leq -4 \\ \frac{1}{2}x - 6, & \text{if } x > -4 \end{cases} \] follow these steps: ### 1. **Identify the Pieces of the Function** - **First Piece:** \( g(x) = x + 2 \) for \( x \leq -4 \) - **Slope:** 1 - **Y-intercept:** 2 - **Second Piece:** \( g(x) = \frac{1}{2}x - 6 \) for \( x > -4 \) - **Slope:** \( \frac{1}{2} \) - **Y-intercept:** -6 ### 2. **Determine Key Points and Continuity at \( x = -4 \)** - **At \( x = -4 \):** - Use the first piece since \( x \leq -4 \). - \( g(-4) = (-4) + 2 = -2 \) - This point is included in the first piece: **\((-4, -2)\)** (closed circle). - **Limit from the Right as \( x \) Approaches -4:** - Use the second piece: \( \lim_{x \to -4^+} g(x) = \frac{1}{2}(-4) - 6 = -2 - 6 = -8 \) - This indicates a **jump discontinuity** at \( x = -4 \). - Represented by an open circle at \((-4, -8)\). ### 3. **Plot Each Piece** - **First Piece (\( g(x) = x + 2 \) for \( x \leq -4 \)):** - Plot the point \((-4, -2)\) with a closed circle. - Since the slope is 1, for every 1 unit increase in \( x \), \( y \) increases by 1. - Draw a straight line extending to the left from \((-4, -2)\). - **Second Piece (\( g(x) = \frac{1}{2}x - 6 \) for \( x > -4 \)):** - Start just to the right of \( x = -4 \) with an open circle at \((-4, -8)\). - Since the slope is \( \frac{1}{2} \), for every 2 units increase in \( x \), \( y \) increases by 1. - Draw a straight line extending to the right from the open circle. ### 4. **Visual Representation** Here's a rough sketch of the graph: ``` y | | Second Piece: y = (1/2)x - 6 | / | / | / | / |__________●________/__________ x (-4, -2) Open Circle at (-4, -8) | | | First Piece: y = x + 2 | | | | ``` ### 5. **Key Characteristics** - **Slope:** The first piece has a steeper slope (1) compared to the second piece (\( \frac{1}{2} \)). - **Y-Intercepts:** - First piece intersects the y-axis at (0, 2). - Second piece intersects the y-axis at (0, -6). - **Discontinuity:** There is a jump at \( x = -4 \): - The function value jumps from \(-2\) (from the first piece) to approaching \(-8\) (from the second piece) as \( x \) crosses \(-4\) from left to right. ### 6. **Summary** - For \( x \leq -4 \), the graph is a straight line with slope 1 passing through \((-4, -2)\). - For \( x > -4 \), the graph is a different straight line with slope \( \frac{1}{2} \) starting just above \((-4, -8)\). - There's a visible jump at \( x = -4 \) indicating the discontinuity between the two pieces. By following these steps, you can accurately sketch the graph of the given piecewise function.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To sketch the graph of the function \( g(x) \), we analyze the two pieces of the piecewise function. For the first piece, \( g(x) = x + 2 \) when \( x \leq -4 \): This is a straight line with a slope of 1 and a y-intercept of 2. Specifically, at \( x = -4 \), we have: \[ g(-4) = -4 + 2 = -2 \] At this point, we mark the point \((-4, -2)\) on the graph. Since this part of the function includes values up to and including -4, we draw a solid dot at this point and continue the line to the left indefinitely. For the second piece, \( g(x) = \frac{1}{2} x - 6 \) when \( x > -4 \): This line has a slope of \( \frac{1}{2} \) and a y-intercept of -6. To find the value where it intersects at \( x = -4 \): \[ g(-4) = \frac{1}{2}(-4) - 6 = -2 - 6 = -8 \] But since this portion of the function does not include -4, we put an open dot at the point \((-4, -8)\). As we advance along this line for \( x > -4 \), we can calculate another point. For example, at \( x = 0 \): \[ g(0) = \frac{1}{2}(0) - 6 = -6 \] Thus, we mark the point \((0, -6)\) on the graph. Finally, we ensure to connect the dots according to the defined slopes for each section, creating a graph that consists of a line starting from \((-4, -2)\) going left indefinitely, and another line starting just after \((-4, -8)\) with a gentler slope upward. This piecewise function illustrates a clear shift in behavior at \( x = -4 \), making the graph visually intriguing!

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad