Pregunta
upstudy study bank question image url

Use the shell method to find the volume of the solid formed when a hole of radius 6 is drilled symmetrically along the axis of a right circular cone of radius 8 and height 12 .

Ask by Gordon Bird. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is not possible because the hole's radius is larger than the cone's base radius.

Solución

To find the volume of the solid formed when a hole of radius 6 is drilled symmetrically along the axis of a right circular cone of radius 8 and height 12 using the shell method, we can follow these steps: ### Step 1: Understand the Geometry 1. **Cone Dimensions**: - Radius \( R = 8 \) - Height \( H = 12 \) 2. **Drilled Hole**: - Radius of the hole \( r = 6 \) ### Step 2: Set Up the Problem The volume of the solid can be calculated by finding the volume of the cone and subtracting the volume of the cylindrical hole. ### Step 3: Volume of the Cone The volume \( V_c \) of a cone is given by the formula: \[ V_c = \frac{1}{3} \pi R^2 H \] Substituting the values: \[ V_c = \frac{1}{3} \pi (8^2)(12) \] ### Step 4: Volume of the Cylindrical Hole The volume \( V_h \) of a cylinder is given by the formula: \[ V_h = \pi r^2 h \] Where \( h \) is the height of the cylinder. Since the hole goes through the entire height of the cone, \( h = 12 \): \[ V_h = \pi (6^2)(12) \] ### Step 5: Calculate the Volumes Now, we will calculate both volumes. 1. **Volume of the Cone**: \[ V_c = \frac{1}{3} \pi (8^2)(12) = \frac{1}{3} \pi (64)(12) = \frac{768}{3} \pi = 256 \pi \] 2. **Volume of the Cylindrical Hole**: \[ V_h = \pi (6^2)(12) = \pi (36)(12) = 432 \pi \] ### Step 6: Calculate the Volume of the Solid The volume of the solid \( V_s \) is given by: \[ V_s = V_c - V_h \] Substituting the calculated volumes: \[ V_s = 256 \pi - 432 \pi = -176 \pi \] ### Step 7: Interpret the Result Since the volume cannot be negative, this indicates that the cylindrical hole is larger than the cone's base, which is not physically possible in this context. Therefore, the problem as stated leads to an invalid scenario. ### Conclusion The volume of the solid formed when a hole of radius 6 is drilled symmetrically along the axis of a right circular cone of radius 8 and height 12 is not feasible, as the hole's radius exceeds the cone's base radius. Thus, the solid cannot exist in this configuration.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the volume of the solid formed by a right circular cone with a cylindrical hole drilled through it, we start by determining the volume of the cone and then subtracting the volume of the cylindrical hole. The cone's volume \( V_{\text{cone}} \) can be calculated using the formula: \[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \] where \( r = 8 \) (radius of the cone) and \( h = 12 \) (height of the cone). Plugging in the values gives: \[ V_{\text{cone}} = \frac{1}{3} \pi (8^2)(12) = \frac{1}{3} \pi (64)(12) = \frac{768}{3} \pi = 256 \pi \] Next, we find the volume of the cylindrical hole \( V_{\text{cylinder}} \), which has a radius of 6 and a height equal to the height of the cone, 12: \[ V_{\text{cylinder}} = \pi r^2 h = \pi (6^2)(12) = \pi (36)(12) = 432 \pi \] Finally, we subtract the volume of the cylinder from the volume of the cone: \[ V_{\text{solid}} = V_{\text{cone}} - V_{\text{cylinder}} = 256 \pi - 432 \pi = -176 \pi \] However, a negative volume doesn't make sense in physical terms, which indicates that the radius of the hole is too large to fit within the dimensions of the cone. Therefore, in order for the hole to be drilled through the cone, the radius of the hole must be smaller than the dimensions of the cone. Thus, the procedure demonstrates the importance of ensuring that geometric constraints are observed: always check that any drilled hole fits within the original solid before attempting to calculate the volume.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad