Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { estion } 2 \text { (4 points) } \\ & \\ \text { Hor graduation, Emma receives } \$ 875 \text { from the money in the cards she received from family } \\ \text { and friends. } \\ \text { How would it take for Emma's money to double (grow to } \$ 1750 \text { ) if the interest is } \\ \text { compounded continuously at } 6 \% ?\end{array} \)

Ask by Schultz Gibbs. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It will take approximately 11.55 years for Emma's \$875 to double to \$1,750 with continuous compounding at a 6% annual interest rate.

Solución

To determine how long it will take for Emma's \$875 to double to \$1,750 with continuous compounding at an annual interest rate of 6%, we can use the formula for continuous compound interest: \[ A = P \cdot e^{rt} \] Where: - \( A \) = the amount of money accumulated after time \( t \) - \( P \) = the principal amount (\$875) - \( r \) = annual interest rate (0.06) - \( t \) = time in years - \( e \) = Euler's number (approximately 2.71828) Given: \[ 1750 = 875 \cdot e^{0.06t} \] 1. **Divide both sides by 875:** \[ 2 = e^{0.06t} \] 2. **Take the natural logarithm (ln) of both sides to solve for \( t \):** \[ \ln(2) = 0.06t \] 3. **Solve for \( t \):** \[ t = \frac{\ln(2)}{0.06} \approx \frac{0.693147}{0.06} \approx 11.55 \text{ years} \] **Conclusion:** It will take approximately **11.55 years** for Emma's \$875 to double to \$1,750 with continuous compounding at a 6% annual interest rate.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine how long it will take for Emma's money to double under continuously compounded interest, we can use the formula for continuous compound interest: \( A = Pe^{rt} \). Here, \( A \) is the amount of money accumulated after time \( t \), \( P \) is the principal amount (in this case, $875), \( r \) is the annual interest rate (0.06), and \( t \) is the time in years. Setting \( A \) to $1750 gives us the equation \( 1750 = 875e^{0.06t} \). Dividing both sides by 875 gives \( 2 = e^{0.06t} \). Taking the natural logarithm of both sides allows us to solve for \( t \): \( \ln(2) = 0.06t \), leading to \( t \approx \frac{\ln(2)}{0.06} \approx 11.55 \) years. So, Emma can expect her money to double in about 11.55 years! Now, to spice things up, if Emma were to invest her money in a high-interest savings account instead, she might achieve faster growth with features like a sign-up bonus or higher rates for large deposits. However, remember that while it can be tempting to chase high yields, it’s crucial to assess the reliability and safety of such investments, evaluating terms and conditions carefully!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad