Pregunta
Given the following logarithmic function below, what is the value of \( f(2) \) (round to the nearest hundredth)? \( f(x)=\ln x \) 1.69 0.69 0.89 0.77
Ask by Reid Medina. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( f(2) \approx 0.69 \)
Solución
To find the value of \( f(2) \) for the given logarithmic function \( f(x) = \ln x \), we substitute \( x = 2 \) into the function.
Given:
\[ f(x) = \ln x \]
Substitute \( x = 2 \):
\[ f(2) = \ln 2 \]
To find the value of \( f(2) \), we need to calculate \( \ln 2 \).
Let's calculate \( \ln 2 \) using a calculator or a logarithmic table.
Calculate the value by following steps:
- step0: Calculate:
\(\ln{\left(2\right)}\)
The value of \( \ln 2 \) is approximately 0.693147.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the value of \( f(2) \) for the function \( f(x) = \ln x \), we need to calculate \( \ln 2 \). Using a calculator, we find that \( \ln 2 \approx 0.693 \). Rounding to the nearest hundredth gives us 0.69. So, the correct answer is 0.69! Let's celebrate the beauty of logarithms and their applications in real life—from measuring sound intensity in decibels to calculating the pH levels in chemistry, logarithmic functions truly help us understand the world in exponential ways (pun intended)!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium