Pregunta
upstudy study bank question image url

A line contains the point \( (-3,-4) \) and is perpendicular to a line with a slope of \( { }^{\frac{3}{5}} \). Write an equation of the line satisfying the given conditions. Write the answer in slope-intercept form.

Ask by Ward Coleman. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line in slope-intercept form is \( y = -\frac{5}{3}x - 9 \).

Solución

To find the equation of the line that is perpendicular to a line with a slope of \( \frac{3}{5} \) and passes through the point \( (-3, -4) \), follow these steps: 1. **Determine the Perpendicular Slope:** The slope of the perpendicular line is the negative reciprocal of the given slope. \[ m = -\frac{5}{3} \] 2. **Use the Point-Slope Form:** The point-slope form of a line is: \[ y - y_1 = m(x - x_1) \] Substituting the known point \( (-3, -4) \) and the slope \( m = -\frac{5}{3} \): \[ y - (-4) = -\frac{5}{3}(x - (-3)) \] Simplifying: \[ y + 4 = -\frac{5}{3}(x + 3) \] 3. **Convert to Slope-Intercept Form:** Distribute the slope on the right-hand side: \[ y + 4 = -\frac{5}{3}x - 5 \] Subtract 4 from both sides to solve for \( y \): \[ y = -\frac{5}{3}x - 9 \] **Final Equation:** \[ y = -\frac{5}{3}x - 9 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the equation of the line that contains the point \( (-3,-4) \) and is perpendicular to a line with a slope of \( \frac{3}{5} \), you first need to determine the slope of the new line. Since perpendicular lines have slopes that multiply to \(-1\), you can find the slope (m) of the line you want by using the formula: \[ m \cdot \frac{3}{5} = -1 \] Solving for \( m \) gives: \[ m = -\frac{5}{3} \] Now, you can use the point-slope form of the equation of a line, which is: \[ y - y_1 = m(x - x_1) \] Substituting in the point \( (-3, -4) \) and the slope \( -\frac{5}{3} \): \[ y - (-4) = -\frac{5}{3}(x - (-3)) \] Simplifying that gives: \[ y + 4 = -\frac{5}{3}(x + 3) \] Distributing the slope: \[ y + 4 = -\frac{5}{3}x - 5 \] Now, isolate \( y \): \[ y = -\frac{5}{3}x - 5 - 4 \] This simplifies to: \[ y = -\frac{5}{3}x - 9 \] Thus, the equation of the line in slope-intercept form is: \[ y = -\frac{5}{3}x - 9 \] This is your final answer!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad