\[ \left\{\begin{array}{r}4 x-3 y=0 \\ -4 x+3 y=0\end{array}\right. \] Determine if the point \( (-3,-4) \) lies on both of the lines in the system of equations by substituting the ordered pair into both equation
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To check if the point \( (-3, -4) \) lies on both lines, we'll substitute \( x = -3 \) and \( y = -4 \) into each equation. For the first equation, \( 4x - 3y = 0 \): \[ 4(-3) - 3(-4) = -12 + 12 = 0 \] This holds true. Now, for the second equation, \( -4x + 3y = 0 \): \[ -4(-3) + 3(-4) = 12 - 12 = 0 \] This also holds true. Since both equations are satisfied by the point \( (-3, -4) \), we can conclude that this point lies on both lines in the system.