Pregunta
upstudy study bank question image url

Type your answer What is the reference angle of the angle \( -260^{\circ} \) ?

Ask by Page Craig. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The reference angle of \( -260^{\circ} \) is \( 80^{\circ} \).

Solución

To find the **reference angle** of \( -260^{\circ} \), follow these steps: ### 1. Understand Reference Angles A *reference angle* is the smallest acute angle (less than \( 90^{\circ} \)) that the terminal side of the given angle makes with the x-axis. Reference angles are always positive, regardless of the original angle's direction (positive or negative). ### 2. Find a Coterminal Angle Between \( 0^{\circ} \) and \( 360^{\circ} \) Since the given angle is negative, it's helpful to find its positive coterminal angle by adding \( 360^{\circ} \): \[ -260^{\circ} + 360^{\circ} = 100^{\circ} \] So, \( 100^{\circ} \) is coterminal with \( -260^{\circ} \) and lies between \( 0^{\circ} \) and \( 360^{\circ} \). ### 3. Determine the Quadrant of the Coterminal Angle \( 100^{\circ} \) lies in the **second quadrant** (between \( 90^{\circ} \) and \( 180^{\circ} \)). ### 4. Calculate the Reference Angle In the second quadrant, the reference angle (\( \theta_{\text{ref}} \)) is calculated as: \[ \theta_{\text{ref}} = 180^{\circ} - \theta \] Where \( \theta \) is the coterminal angle. \[ \theta_{\text{ref}} = 180^{\circ} - 100^{\circ} = 80^{\circ} \] ### **Conclusion** The reference angle of \( -260^{\circ} \) is **\( 80^{\circ} \)**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the reference angle of \( -260^{\circ} \), first, we need to convert it to a positive angle by adding \( 360^{\circ} \): \[ -260^{\circ} + 360^{\circ} = 100^{\circ} \] Since \( 100^{\circ} \) lies in the second quadrant, the reference angle is calculated as: \[ 180^{\circ} - 100^{\circ} = 80^{\circ} \] So, the reference angle of \( -260^{\circ} \) is \( 80^{\circ} \). To visualize this, imagine the unit circle! The reference angle essentially tells you how far an angle is from the nearest x-axis, which is crucial in trigonometry for understanding angle measures and their corresponding values in different quadrants. Reference angles help in solving problems involving sine, cosine, and tangent functions easily. If you're tackling angles often, a handy tip is to remember the quadrant rules: in Quadrant I, the reference angle is the angle itself; in Quadrant II, it's \( 180° - \text{angle} \); in Quadrant III, it's \( \text{angle} - 180° \); and in Quadrant IV, it's \( 360° - \text{angle} \). Avoiding common mistakes like forgetting to adjust for negative angles can save you time and keep your calculations accurate!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad