Pregunta
upstudy study bank question image url

5. If \( f(2)=f(-3)=0 \), use the identity \( f(x) \equiv x^{3}+2 x^{2}+a x+b \) to find the values of \( a \) and \( b \). Hence, the remainder when \( x^{3}+2 x^{2}+a x+b \) is divided by \( x-4 \).

Ask by Pollard Page. in Malawi
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( a = -5 \), \( b = -6 \), and the remainder is 70.

Solución

Given that \( f(2) = f(-3) = 0 \), we can use the identity \( f(x) \equiv x^{3} + 2x^{2} + ax + b \) to find the values of \( a \) and \( b \). Since \( f(2) = 0 \), we substitute \( x = 2 \) into the identity: \[ f(2) = 2^{3} + 2(2)^{2} + a(2) + b = 0 \] \[ 8 + 8 + 2a + b = 0 \] \[ 16 + 2a + b = 0 \] Since \( f(-3) = 0 \), we substitute \( x = -3 \) into the identity: \[ f(-3) = (-3)^{3} + 2(-3)^{2} + a(-3) + b = 0 \] \[ -27 + 18 - 3a + b = 0 \] \[ -9 - 3a + b = 0 \] Now we have a system of two equations: \[ 16 + 2a + b = 0 \] \[ -9 - 3a + b = 0 \] We can solve this system of equations to find the values of \( a \) and \( b \). Let's solve the system of equations. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}16+2a+b=0\\-9-3a+b=0\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}b=-16-2a\\-9-3a+b=0\end{array}\right.\) - step2: Substitute the value of \(b:\) \(-9-3a-16-2a=0\) - step3: Simplify: \(-25-5a=0\) - step4: Move the constant to the right side: \(-5a=0+25\) - step5: Remove 0: \(-5a=25\) - step6: Change the signs: \(5a=-25\) - step7: Divide both sides: \(\frac{5a}{5}=\frac{-25}{5}\) - step8: Divide the numbers: \(a=-5\) - step9: Substitute the value of \(a:\) \(b=-16-2\left(-5\right)\) - step10: Simplify: \(b=-6\) - step11: Calculate: \(\left\{ \begin{array}{l}a=-5\\b=-6\end{array}\right.\) - step12: Check the solution: \(\left\{ \begin{array}{l}a=-5\\b=-6\end{array}\right.\) - step13: Rewrite: \(\left(a,b\right) = \left(-5,-6\right)\) The values of \( a \) and \( b \) are \( a = -5 \) and \( b = -6 \). Now, we need to find the remainder when \( x^{3} + 2x^{2} + ax + b \) is divided by \( x - 4 \). The remainder theorem states that the remainder of a polynomial \( f(x) \) when divided by \( x - c \) is \( f(c) \). Therefore, the remainder when \( x^{3} + 2x^{2} + ax + b \) is divided by \( x - 4 \) is \( f(4) \). Substitute \( x = 4 \) into the polynomial: \[ f(4) = 4^{3} + 2(4)^{2} + a(4) + b \] \[ f(4) = 64 + 32 - 20 - 6 \] \[ f(4) = 70 \] Therefore, the remainder when \( x^{3} + 2x^{2} + ax + b \) is divided by \( x - 4 \) is 70.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the values of \( a \) and \( b \) given that \( f(2) = 0 \) and \( f(-3) = 0 \), we start by substituting these values into the polynomial function \( f(x) = x^3 + 2x^2 + ax + b \). 1. Substituting \( x = 2 \): \[ f(2) = 2^3 + 2(2^2) + 2a + b = 0 \] \[ 8 + 8 + 2a + b = 0 \quad \Rightarrow \quad 16 + 2a + b = 0 \quad \Rightarrow \quad 2a + b = -16 \quad \text{(Equation 1)} \] 2. Substituting \( x = -3 \): \[ f(-3) = (-3)^3 + 2(-3)^2 + (-3)a + b = 0 \] \[ -27 + 2(9) - 3a + b = 0 \quad \Rightarrow \quad -27 + 18 - 3a + b = 0 \] \[ -9 - 3a + b = 0 \quad \Rightarrow \quad -3a + b = 9 \quad \text{(Equation 2)} \] Now, we can solve the system of equations (Equation 1 and Equation 2): From Equation 1: \[ b = -16 - 2a \] Substituting this expression for \( b \) into Equation 2: \[ -3a + (-16 - 2a) = 9 \] \[ -3a - 16 - 2a = 9 \] \[ -5a - 16 = 9 \] \[ -5a = 25 \] \[ a = -5 \] Now substituting \( a = -5 \) back into Equation 1 to find \( b \): \[ 2(-5) + b = -16 \] \[ -10 + b = -16 \] \[ b = -6 \] So we have \( a = -5 \) and \( b = -6 \). Next, we need the remainder when \( f(x) = x^3 + 2x^2 - 5x - 6 \) is divided by \( x - 4 \). We can find this by evaluating \( f(4) \): \[ f(4) = 4^3 + 2(4^2) - 5(4) - 6 \] \[ = 64 + 2(16) - 20 - 6 \] \[ = 64 + 32 - 20 - 6 \] \[ = 64 + 32 = 96 - 20 - 6 = 70 \] Thus, the remainder when \( f(x) \) is divided by \( x - 4 \) is \( \boxed{70} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad