Pregunta
upstudy study bank question image url

\( \min F 5^{\circ}=\frac{\sin 75^{\circ}}{\cos 75^{\circ}}=\frac{\sqrt{3}+1}{\sqrt{3}-1} \) P. \( 2 \cdot+\rightarrow \tan 8^{\circ}=\frac{\cos 7^{\circ}-\sin 7^{\circ}}{\cos 7^{\circ}+\sin 7^{\circ}} \)

Ask by Parsons Davies. in India
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \tan 75^{\circ} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] \[ \tan 8^{\circ} = \frac{\cos 7^{\circ} - \sin 7^{\circ}}{\cos 7^{\circ} + \sin 7^{\circ}} \]

Solución

Let's break down the problem step by step. ### Step 1: Analyze the first equation The first part of the problem states: \[ F = \frac{\sin 75^{\circ}}{\cos 75^{\circ}} = \tan 75^{\circ} \] We know that: \[ \tan 75^{\circ} = \tan(45^{\circ} + 30^{\circ}) = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}} \] Using the values: - \(\tan 45^{\circ} = 1\) - \(\tan 30^{\circ} = \frac{1}{\sqrt{3}}\) We can substitute these values into the formula: \[ \tan 75^{\circ} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} \] ### Step 2: Simplify the expression Now, let's simplify the expression: 1. The numerator becomes: \[ 1 + \frac{1}{\sqrt{3}} = \frac{\sqrt{3} + 1}{\sqrt{3}} \] 2. The denominator becomes: \[ 1 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}} \] Putting it all together: \[ \tan 75^{\circ} = \frac{\frac{\sqrt{3} + 1}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] This confirms the first part of the problem. ### Step 3: Analyze the second equation The second part of the problem states: \[ \tan 8^{\circ} = \frac{\cos 7^{\circ} - \sin 7^{\circ}}{\cos 7^{\circ} + \sin 7^{\circ}} \] We can use the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] Let \(a = 45^{\circ}\) and \(b = 37^{\circ}\) (since \(45^{\circ} - 37^{\circ} = 8^{\circ}\)). Using the values: - \(\tan 45^{\circ} = 1\) - \(\tan 37^{\circ} = \tan(45^{\circ} - 8^{\circ})\) We can express \(\tan 37^{\circ}\) in terms of sine and cosine: \[ \tan 37^{\circ} = \frac{\sin 37^{\circ}}{\cos 37^{\circ}} \] ### Step 4: Solve for \(\tan 8^{\circ}\) To find \(\tan 8^{\circ}\), we can use the identity: \[ \tan 8^{\circ} = \frac{\tan 45^{\circ} - \tan 37^{\circ}}{1 + \tan 45^{\circ} \tan 37^{\circ}} = \frac{1 - \tan 37^{\circ}}{1 + \tan 37^{\circ}} \] Now, we can calculate \(\tan 8^{\circ}\) using the known values of \(\tan 37^{\circ}\). ### Conclusion We have confirmed the first part of the problem and set up the second part. If you would like to proceed with numerical calculations or further simplifications, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the angle 75° is often celebrated in mathematics because it can be expressed as the sum of other key angles? Specifically, \(75^\circ\) can be broken down into \(45^\circ + 30^\circ\), which allows us to use the angle addition formulas to find its sine and cosine values. This connection between angles highlights the beauty of trigonometry and how it relates to other branches of math! In real-world terms, understanding these trigonometric functions can help you in various fields, such as engineering, architecture, and even in art! For example, architects frequently use trigonometric functions to determine loads and structural stability in buildings, ensuring that everything remains in balance and safe. So, next time you're in a really cool building, consider the math that made it possible!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad