Pregunta

Graph the function \( f(x) = \sqrt[3]{x - 4} \) and identify its domain and range.

Ask by Potter Griffiths. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = \sqrt[3]{x - 4} \) is a cube root function shifted 4 units to the right. Its graph is a smooth curve passing through the point (4,0) and extending infinitely in both directions. The domain and range of the function are all real numbers. Domain: All real numbers Range: All real numbers

Solución

Certainly! Let's analyze and graph the function \( f(x) = \sqrt[3]{x - 4} \), and determine its **domain** and **range**. ## Function Overview The function \( f(x) = \sqrt[3]{x - 4} \) is a **cube root function**. It's a transformation of the basic cube root function \( f(x) = \sqrt[3]{x} \), shifted horizontally. ### Key Characteristics: - **Base Function**: \( f(x) = \sqrt[3]{x} \) - **Transformation**: Shifted **4 units to the right**. ## Graphing \( f(x) = \sqrt[3]{x - 4} \) Here's how you can sketch the graph: 1. **Start with the Base Graph**: The basic cube root graph \( f(x) = \sqrt[3]{x} \) passes through the origin (0,0), with the graph increasing from left to right, flattening as it approaches the x-axis for negative \( x \) and steepening for positive \( x \). 2. **Apply the Horizontal Shift**: Shift the entire graph **4 units to the right** to account for the \( (x - 4) \) inside the cube root. 3. **Plot Key Points**: - **Original Point**: (0, 0) becomes (4, 0). - **Additional Points**: - For \( x = 1 \): \( f(1) = \sqrt[3]{1 - 4} = \sqrt[3]{-3} \approx -1.442 \) → (1, -1.442) - For \( x = 8 \): \( f(8) = \sqrt[3]{8 - 4} = \sqrt[3]{4} \approx 1.587 \) → (8, 1.587) 4. **Shape of the Graph**: - The graph passes through all points smoothly, extending infinitely in both directions. - It has **no asymptotes** and is **continuous** everywhere. ### Visual Representation While I can't provide a visual graph here, you can visualize the graph as follows: - **Origin Shift**: Instead of passing through (0,0), it passes through (4,0). - **Increasing Nature**: As \( x \) increases beyond 4, \( f(x) \) increases; as \( x \) decreases below 4, \( f(x) \) decreases. - **Symmetry**: The cube root function is symmetric about the origin before shifting. After shifting, this symmetry is around the point (4,0). ## Domain and Range ### Domain The **domain** of a function is the set of all possible input values (x-values) for which the function is defined. - **Cube Root Function Properties**: The cube root of any real number is defined (unlike even roots, which require non-negative inputs). - **For \( f(x) = \sqrt[3]{x - 4} \)**: - **Domain**: All real numbers. \[ \boxed{\text{Domain}: \mathbb{R} \text{ (all real numbers)}} \] ### Range The **range** of a function is the set of all possible output values (y-values). - **Cube Root Function Properties**: Since the cube root can produce any real number, so can \( f(x) = \sqrt[3]{x - 4} \). - **Range**: All real numbers. \[ \boxed{\text{Range}: \mathbb{R} \text{ (all real numbers)}} \] ## Summary - **Function**: \( f(x) = \sqrt[3]{x - 4} \) - **Graph**: A cube root curve shifted 4 units to the right, passing through (4,0), extending infinitely in all directions. - **Domain**: All real numbers (\( \mathbb{R} \)) - **Range**: All real numbers (\( \mathbb{R} \)) If you have graphing tools like Desmos, GeoGebra, or a graphing calculator, you can input the function \( f(x) = \sqrt[3]{x - 4} \) to see a visual representation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( f(x) = \sqrt[3]{x - 4} \) is a cubic root function, which means it can take any real number as input. Consequently, the domain of this function is all real numbers, expressed as \( (-\infty, \infty) \). Since cubic roots can yield any real number output, the range of \( f(x) \) is similarly \( (-\infty, \infty) \). To graph this function, plot a few key points. When \( x = 4 \), \( f(4) = 0 \). For \( x < 4 \), like \( x = 3 \), \( f(3) = \sqrt[3]{-1} = -1 \), and for \( x > 4 \), like \( x = 5 \), \( f(5) = 1 \). This results in a curve that smoothly stretches across all quadrants of the Cartesian plane, showing the characteristic shape of a cube root function. Overall, the graph will increase steadily, crossing through the point (4, 0), and as \( x \) decreases or increases, the values of \( f(x) \) will range infinitely.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad