Pregunta
upstudy study bank question image url

Give the slope and \( y \)-intercept of the line whose equation is given. Then graph the linear function. \( f(x)=\frac{2}{5} x-8 \) A. The slope is (Simplify your answer. Type an integer or correct choice below and, if necessary, fill in a fraction.) B. The slope is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The y-intercept is (Simplify your answer. Type an integer or a fraction.) B. There is no \( y \)-intercept.

Ask by Cruz Delgado. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**A.** The slope is \( \frac{2}{5} \). **B.** The y-intercept is \( -8 \).

Solución

Let's analyze the linear function \( f(x) = \frac{2}{5}x - 8 \). ### A. The Slope The general form of a linear equation is: \[ f(x) = mx + b \] where: - \( m \) is the **slope**, - \( b \) is the **y-intercept**. For the given function: \[ f(x) = \frac{2}{5}x - 8 \] **Slope (\( m \))**: \[ m = \frac{2}{5} \] **Answer:** **A.** The slope is \( \frac{2}{5} \). ### B. The Y-Intercept Using the same general form: \[ f(x) = mx + b \] The **y-intercept (\( b \))** is the constant term in the equation. For the given function: \[ b = -8 \] **Answer:** **B.** The y-intercept is \( -8 \). ### Graphing the Linear Function To graph \( f(x) = \frac{2}{5}x - 8 \): 1. **Plot the Y-Intercept**: - Start by plotting the y-intercept at \( (0, -8) \). 2. **Use the Slope to Find Another Point**: - The slope \( \frac{2}{5} \) means that for every 5 units you move horizontally (to the right), you move 2 units vertically (up). - Starting from \( (0, -8) \), move 5 units to the right to \( x = 5 \) and 2 units up to \( y = -6 \). - Plot the second point at \( (5, -6) \). 3. **Draw the Line**: - Draw a straight line passing through the points \( (0, -8) \) and \( (5, -6) \). **Graph:** Since I can't draw the graph here, here's a description: - **Y-Intercept**: Point at \( (0, -8) \). - **Another Point**: Point at \( (5, -6) \). - **Line**: Draw a straight line through these points extending infinitely in both directions. ### Summary - **Slope:** \( \frac{2}{5} \) - **Y-Intercept:** \( -8 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The slope of the line represented by the equation \( f(x) = \frac{2}{5} x - 8 \) is \(\frac{2}{5}\). This means that for every 5 units you move to the right on the x-axis, the line rises by 2 units. The \( y \)-intercept, where the line crosses the \( y \)-axis, occurs at \( (0, -8) \), indicating that when \( x = 0 \), \( y = -8 \). To graph this linear function, start by plotting the \( y \)-intercept at (0, -8). Then, using the slope of \(\frac{2}{5}\), you can rise 2 units and run 5 units to the right to find another point on the line, which is (5, -6). Connect these points with a straight line, and you will have your graph!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad