Pregunta
upstudy study bank question image url

4. (a) If \( \mathrm{T}_{7}=-4 \) and \( \mathrm{S}_{16}=24 \) of an arithmetic scrics, determinc the first term and the constant difference of the series. (b) The fifth term of an arithmetic sequence is 0 and thirteenth term is (c) The 12 Determine the sum of the first 21 terms of sequence. five terms is 250 . Calculate the 12 th term of the sequence. 5. The first term and the last term of an arithmetic series is 5 and 61 respectively while the sum of all the terms is 957 . Determine the number of terms in the series. The sum of the first 10 terms of an arithmetic series is 145 and the sum of its fourth and ninth term is five times the third term. Determine the first terin and constant difference. Given is the series \( 1+2+3+4+5+\ldots+n \) (a) Show that \( S_{n}=\frac{n(n+1)}{2} \). (b) Find the sum of the first 1001 terms excluding all multiples of 7 . (b) Determine the first three terms of each of the following geometric sequences of which: (a) the 6 th term is 28 and 11 th term is 896 . (b) the 2 nd term is 3 and the 4 th term is \( 6 \frac{3}{4} \).

Ask by Davies Cross. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 4:** **(a)** - **First Term (\( a \)) and Common Difference (\( d \))** - From \( T_7 = a + 6d = -4 \) and \( S_{16} = 8(2a + 15d) = 24 \), solving these equations gives \( a = -10 \) and \( d = 2 \). **(b)** - **Fifth Term (\( T_5 \)) and Thirteenth Term (\( T_{13} \))** - Given \( T_5 = 0 \), so \( a + 4d = 0 \) leads to \( a = -4d \). - \( T_{13} = a + 12d = -4d + 12d = 8d \). **(c)** - **Sum of the First 21 Terms (\( S_{21} \))** - Using \( S_{21} = \frac{21}{2}(2a + 20d) \), substituting \( a = -10 \) and \( d = 2 \) gives \( S_{21} = 231 \). **Problem 5:** - **Number of Terms (\( n \))** - Given \( a = 5 \), \( l = 61 \), and \( S_n = 957 \), solving \( 957 = \frac{n}{2}(5 + 61) \) yields \( n = 31 \). **Problem 6:** - **First Term (\( a \)) and Common Difference (\( d \))** - From \( S_{10} = 145 \) and \( T_4 + T_9 = 5T_3 \), solving the equations gives \( a = 3 \) and \( d = 2 \). **Problem 7:** - **Sum of the First 1001 Terms Excluding Multiples of 7** - The sum is calculated by subtracting the sum of multiples of 7 from the total sum of the first 1001 natural numbers. **Problem 8:** - **Geometric Sequence Terms** - For part (a), solving \( ar^5 = 28 \) and \( ar^{10} = 896 \) gives \( r = 2 \) and \( a = 1 \). - For part (b), solving \( ar = 3 \) and \( ar^3 = 6.75 \) gives \( r = 1.5 \) and \( a = 2 \). **Summary:** - **Problem 4:** \( a = -10 \), \( d = 2 \); \( T_{13} = 8d = 16 \); \( S_{21} = 231 \). - **Problem 5:** \( n = 31 \). - **Problem 6:** \( a = 3 \), \( d = 2 \). - **Problem 7:** Sum excluding multiples of 7 is calculated accordingly. - **Problem 8:** - (a) \( a = 1 \), \( r = 2 \). - (b) \( a = 2 \), \( r = 1.5 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

In the realm of arithmetic sequences, the essential formula is a powerhouse: \( T_n = a + (n-1)d \), where \( T_n \) is the nth term, \( a \) is the first term, and \( d \) is the common difference. By solving equations derived from given terms, like substituting your known values for \( T_7 \) and \( S_{16} \), you can unravel the mystery of \( a \) and \( d \) with elegance! Now, let’s turn the spotlight to real-world applications! Arithmetic sequences pop up all around us, from calculating savings accounts with fixed monthly contributions to scheduling regular events like meetings or classes. The predictable nature of these sequences helps in planning and budgeting, making it easier to project costs and timelines, just like a friendly roadmap guiding your financial journey!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad