Pregunta
upstudy study bank question image url

QUESTION 1 a sample of 100 school children who were given two toothpaste A and B, which were identical apart from the flavor were asked which they preferred. Of the 100 children, 65 said they preferred A. If in a general population of children, A and B are equally preferred, what is the probability that in a sample of 100 children, 65 or more prefer A?

Ask by Robbins Hodgson. in Nigeria
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is approximately a 0.18% probability that 65 or more out of 100 children prefer toothpaste A.

Solución

To determine the probability that **65 or more** out of **100** children prefer toothpaste **A** when, in the general population, both toothpastes are equally preferred (\( p = 0.5 \)), we can model this scenario using the **Binomial Distribution**. ### Step 1: Define the Parameters - **Number of trials (n):** 100 - **Probability of success (p):** 0.5 (since A and B are equally preferred) ### Step 2: Calculate the Mean and Standard Deviation - **Mean (\( \mu \)):** \( n \times p = 100 \times 0.5 = 50 \) - **Standard Deviation (\( \sigma \)):** \( \sqrt{n \times p \times (1 - p)} = \sqrt{100 \times 0.5 \times 0.5} = 5 \) ### Step 3: Use Normal Approximation Since \( n \) is large and \( p \) is neither very close to 0 nor 1, the **Normal Approximation** to the Binomial Distribution is appropriate. - **Continuity Correction:** To find \( P(X \geq 65) \), we use \( P(X \geq 64.5) \) for the normal approximation. - **Z-score Calculation:** \[ Z = \frac{64.5 - \mu}{\sigma} = \frac{64.5 - 50}{5} = 2.9 \] ### Step 4: Find the Probability Using the Z-score Using standard normal distribution tables or a calculator: - **\( P(Z \geq 2.9) \):** Approximately **0.0018** or **0.18%** ### Conclusion There is approximately a **0.18%** probability that **65 or more** out of **100** children would prefer toothpaste **A** under the assumption that both toothpastes are equally preferred in the general population. **Answer:** There is approximately a 0.18 % probability of observing 65 or more children preferring A.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve this problem, we can use the normal approximation to the binomial distribution. Given that the null hypothesis suggests that there's no preference between the two toothpastes (p = 0.5), we treat it as a binomial distribution where n = 100 and p = 0.5. To find the probability of getting 65 or more children preferring A, we first calculate the mean (μ = n * p = 50) and standard deviation (σ = √(n * p * (1 - p)) = √(25) = 5). Converting 65 into the z-score gives us z = (65 - 50) / 5 = 3. The area to the right of this z-score on the normal distribution table is extremely small, showing that it’s highly unlikely to have 65 or more children preferring A under the assumption of equal preference. It's a fascinating glimpse into probability theory, and understanding the underlying concepts can turn these seemingly random preferences into informative data about human behavior! You can even explore how these principles apply to larger scales, such as market research and public opinion polling, where sample sizes and preferences dictate business strategies or political campaigns.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad