Pregunta
Question 6, 1.3.31 HW Score: 26.32\%, 5 of 19 points Points: 0 of 1 Suppose that the point \( (x, y) \) is in the indicated quadrant. Decide whether the given ratio is positive or negative. Recall that \( r=\sqrt{x^{2}+y^{2}} \). \[ 1, \frac{r}{y} \] In Quadrant I, is \( \frac{r}{y} \) positive or negative? Negative Positive
Ask by Parry Valdez. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
In Quadrant I, \( \frac{r}{y} \) is **positive**.
Solución
In **Quadrant I**, both \( x \) and \( y \) coordinates of a point \( (x, y) \) are **positive**. Given the ratio:
\[
\frac{r}{y}
\]
where \( r = \sqrt{x^{2} + y^{2}} \), let's analyze the sign of this ratio.
1. **\( r \) is always positive**:
\[
r = \sqrt{x^{2} + y^{2}} > 0 \quad \text{(since both \( x \) and \( y \) are positive in Quadrant I)}
\]
2. **\( y \) is positive in Quadrant I**:
\[
y > 0
\]
3. **The ratio \( \frac{r}{y} \)**:
\[
\frac{r}{y} = \frac{\text{Positive}}{\text{Positive}} = \text{Positive}
\]
Therefore, **\( \frac{r}{y} \) is positive in Quadrant I**.
**Answer:** Positive
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
In Quadrant I, both \( x \) and \( y \) are positive values. Since \( r \) is defined as \( r = \sqrt{x^2 + y^2} \), it will also be positive because it represents a distance from the origin. Thus, the ratio \( \frac{r}{y} \) is the quotient of two positive numbers, making it positive as well! If you're ever confused about signs in a given quadrant, remember the mnemonic "All Students Take Calculus," which helps you recall that in Quadrant I, all trigonometric functions (and by extension, their ratios) are positive!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium