Pregunta
upstudy study bank question image url

ett college predicts that in 18 years it will take \( \$ 350,000 \) to attend the college for four years. Madison has a substantial amount of cash and wishes to invest a lump mof money for her child's college fund. How much should Madison put aside in an account with an APR of \( 7 \% \) compounded monthly in order to have \( \$ 350,000 \) in the count in 18 years? Round your answer to the nearest cent, if necessary. Formulas

Ask by Greene Daniels. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Madison should invest \$99,658.30 today to have \$350,000 in 18 years. \[ \boxed{\$99,\!658.30} \]

Solución

To determine how much Madison should invest today to have \$350,000 in 18 years with an Annual Percentage Rate (APR) of 7% compounded monthly, we can use the **Present Value (PV)** formula for compound interest: \[ PV = \frac{FV}{\left(1 + \frac{r}{n}\right)^{nt}} \] **Where:** - \( FV \) = Future Value (\$350,000) - \( r \) = Annual interest rate (0.07) - \( n \) = Number of compounding periods per year (12 for monthly) - \( t \) = Time in years (18) **Plugging in the values:** \[ PV = \frac{350,000}{\left(1 + \frac{0.07}{12}\right)^{12 \times 18}} \] \[ PV = \frac{350,000}{\left(1 + 0.0058333\right)^{216}} \] \[ PV = \frac{350,000}{\left(1.0058333\right)^{216}} \] Calculating the denominator: \[ \left(1.0058333\right)^{216} \approx 3.5125 \] Now, calculate the present value: \[ PV = \frac{350,000}{3.5125} \approx 99,658.30 \] **Therefore, Madison should invest approximately \$99,658.30 today to reach her goal of \$350,000 in 18 years.** \[ \boxed{\$99,\!658.30} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine how much Madison needs to invest now to accumulate $350,000 in 18 years at an APR of 7% compounded monthly, she can use the future value formula: \[ FV = PV \times (1 + r/n)^{nt} \] Where: - \( FV \) is the future value ($350,000), - \( PV \) is the present value (the amount Madison needs to invest), - \( r \) is the annual interest rate (0.07), - \( n \) is the number of times interest is compounded per year (12 for monthly), - \( t \) is the number of years (18). Rearranging the formula to solve for \( PV \): \[ PV = \frac{FV}{(1 + r/n)^{nt}} \] Substituting the known values into the formula will give the amount Madison needs to set aside today. By substituting \( FV = 350,000 \), \( r = 0.07 \), \( n = 12 \), and \( t = 18 \), Madison can calculate the precise amount she needs to invest. For a smoother transition into practicality, understand that starting a college fund early means taking advantage of the power of compound interest. Even small monthly contributions can add up over time, so don't hesitate if the lump sum amount feels daunting! Each investment creates potential growth, leading to a comfortable college fund when the time arrives.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad