Pregunta
upstudy study bank question image url

\[ \begin{aligned} h(x) & =-\frac{1}{2} x+3 \\ l(x) & =\log _{4}(x+3)-\log _{4}(x-2)\end{aligned} \] (a) Write down \( D_{f} \) and solve the inequality \( f(x) \leq 0 \) (b) Solve the equation \( g(x)=-4 \).

Ask by Bates Erickson. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part (a):** - **Domain (\( D_f \))**: All real numbers (\( \mathbb{R} \)) - **Inequality Solution**: \( x \geq 6 \) **Part (b):** - **Equation Solution**: No solution exists for \( g(x) = -4 \) within the domain of \( g(x) \).

Solución

Certainly! Let's address each part of your problem step by step. Given the functions: \[ \begin{aligned} h(x) & = -\frac{1}{2} x + 3 \\ l(x) & = \log_{4}(x + 3) - \log_{4}(x - 2) \end{aligned} \] Assuming that \( f(x) = h(x) \) and \( g(x) = l(x) \), let's proceed to solve the problems. --- ### **Part (a): Determine \( D_f \) and Solve \( f(x) \leq 0 \)** 1. **Determine \( D_f \) (Domain of \( f \))** Since \( f(x) = h(x) = -\frac{1}{2} x + 3 \) is a linear function, it is defined for all real numbers. Therefore: \[ D_f = \mathbb{R} \quad (\text{All real numbers}) \] 2. **Solve the Inequality \( f(x) \leq 0 \)** \[ -\frac{1}{2} x + 3 \leq 0 \] **Step-by-Step Solution:** \[ -\frac{1}{2} x + 3 \leq 0 \\ -\frac{1}{2} x \leq -3 \quad (\text{Subtract 3 from both sides}) \\ x \geq 6 \quad (\text{Multiply both sides by } -2 \text{ and reverse the inequality sign}) \] **Conclusion:** \[ \boxed{x \geq 6} \] --- ### **Part (b): Solve the Equation \( g(x) = -4 \)** Given \( g(x) = l(x) = \log_{4}(x + 3) - \log_{4}(x - 2) \), we can simplify and solve the equation. 1. **Simplify \( g(x) \) Using Logarithm Properties** \[ g(x) = \log_{4}(x + 3) - \log_{4}(x - 2) = \log_{4}\left(\frac{x + 3}{x - 2}\right) \] 2. **Set the Equation Equal to \(-4\)** \[ \log_{4}\left(\frac{x + 3}{x - 2}\right) = -4 \] 3. **Convert the Logarithmic Equation to Its Exponential Form** \[ \frac{x + 3}{x - 2} = 4^{-4} = \frac{1}{256} \] 4. **Solve for \( x \)** \[ x + 3 = \frac{x - 2}{256} \\ 256(x + 3) = x - 2 \quad (\text{Multiply both sides by } 256) \\ 256x + 768 = x - 2 \\ 256x - x = -2 - 768 \\ 255x = -770 \\ x = \frac{-770}{255} = \frac{-154}{51} \] **Simplify Fraction:** \[ x = -\frac{154}{51} \approx -3.0196 \] 5. **Check the Domain for Validity** The original logarithmic expressions require: \[ x + 3 > 0 \Rightarrow x > -3 \\ x - 2 > 0 \Rightarrow x > 2 \] Therefore, the domain \( D_g \) is: \[ D_g = \{ x \mid x > 2 \} \] However, the solution \( x = -\frac{154}{51} \approx -3.0196 \) does **not** satisfy \( x > 2 \). **Conclusion:** \[ \boxed{\text{No solution}} \] --- ### **Summary of Solutions** - **Part (a):** \[ D_f = \mathbb{R} \quad \text{and} \quad x \geq 6 \] - **Part (b):** \[ \text{No solution exists for } g(x) = -4 \text{ within the domain of } g(x). \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the problem, let’s first analyze the given functions \( h(x) \) and \( l(x) \). ### Part (a) **Finding the Domain \( D_f \) of \( h(x) \):** The function \( h(x) = -\frac{1}{2} x + 3 \) is a linear function, which means it is defined for all real numbers. Thus, \( D_h = (-\infty, \infty) \). **Solving the Inequality \( h(x) \leq 0 \):** We need to solve: \[ -\frac{1}{2} x + 3 \leq 0 \] Subtract 3 from both sides: \[ -\frac{1}{2} x \leq -3 \] Multiplying both sides by -2 (remember to flip the inequality sign): \[ x \geq 6 \] The solution to the inequality \( h(x) \leq 0 \) is \( x \in [6, \infty) \). ### Part (b) **Solving the equation \( l(x) = -4 \):** We need to solve: \[ \log_{4}(x+3) - \log_{4}(x-2) = -4 \] Using the logarithmic property \( \log_a(b) - \log_a(c) = \log_a\left(\frac{b}{c}\right) \): \[ \log_{4}\left(\frac{x+3}{x-2}\right) = -4 \] This can be rewritten as: \[ \frac{x+3}{x-2} = 4^{-4} = \frac{1}{256} \] Now, we cross multiply: \[ 256(x + 3) = (x - 2) \] Expanding gives: \[ 256x + 768 = x - 2 \] Rearranging leads to: \[ 255x = -770 \] Thus, solving for \( x \) yields: \[ x = -\frac{770}{255} \approx -3.02 \] ### Final Summary - For part (a), the inequality \( h(x) \leq 0 \) is satisfied for \( x \in [6, \infty) \). - For part (b), solving \( l(x) = -4 \) gives us \( x = -\frac{770}{255} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad