Question Use synthetic division to find the result when \( 4 x^{4}+2 x^{3}-2 x^{2}+23 x-2 \) is divided by \( x+2 \). If there is a remainder, express the result in the form \( q(x)+\frac{r(x)}{b(x)} \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To use synthetic division to divide the polynomial \( 4x^4 + 2x^3 - 2x^2 + 23x - 2 \) by \( x + 2 \), we first take the root of \( x + 2 = 0 \), which gives us \( x = -2 \). We set up synthetic division with the coefficients: \( 4, 2, -2, 23, -2 \). ```plaintext -2 | 4 2 -2 23 -2 | -8 12 -20 -6 -------------------------- 4 -6 10 3 -8 ``` The bottom row represents the coefficients of the quotient polynomial and the remainder, which can be expressed as follows: 1. The quotient is \( 4x^3 - 6x^2 + 10x + 3 \). 2. The remainder is \( -8 \). Thus, we can write the result as: \[ 4x^3 - 6x^2 + 10x + 3 - \frac{8}{x + 2} \] Now to express it in the required form, the final answer is: \[ q(x) = 4x^3 - 6x^2 + 10x + 3, \quad r(x) = -8, \quad b(x) = x + 2 \] So the full answer is: \[ 4x^3 - 6x^2 + 10x + 3 - \frac{8}{x + 2} \]