Pregunta
upstudy study bank question image url

Solve the equation. \( \frac{4}{w^{2}+2 w-8}+\frac{3}{w^{2}+w-6}=\frac{4}{w^{2}+7 w+12} \)

Ask by Estrada Harper. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( w = -\frac{32}{3} \)

Solución

To solve the equation: \[ \frac{4}{w^{2}+2 w-8} + \frac{3}{w^{2}+w-6} = \frac{4}{w^{2}+7 w+12} \] **Step 1: Factor the Denominators** First, factor each quadratic expression in the denominators: 1. \( w^{2} + 2w - 8 \): \[ w^{2} + 2w - 8 = (w + 4)(w - 2) \] 2. \( w^{2} + w - 6 \): \[ w^{2} + w - 6 = (w + 3)(w - 2) \] 3. \( w^{2} + 7w + 12 \): \[ w^{2} + 7w + 12 = (w + 3)(w + 4) \] **Step 2: Rewrite the Equation with Factored Denominators** Substituting the factored forms into the original equation: \[ \frac{4}{(w + 4)(w - 2)} + \frac{3}{(w + 3)(w - 2)} = \frac{4}{(w + 3)(w + 4)} \] **Step 3: Find the Least Common Denominator (LCD)** The LCD of the denominators is \((w + 4)(w + 3)(w - 2)\). Multiply both sides of the equation by this LCD to eliminate the denominators: \[ 4(w + 3) + 3(w + 4) = 4(w - 2) \] **Step 4: Simplify and Solve for \( w \)** Expanding and simplifying: \[ 4(w + 3) + 3(w + 4) = 4w - 8 \\ 4w + 12 + 3w + 12 = 4w - 8 \\ 7w + 24 = 4w - 8 \\ 7w - 4w = -8 - 24 \\ 3w = -32 \\ w = -\frac{32}{3} \] **Step 5: Verify the Solution** Ensure that \( w = -\frac{32}{3} \) does not make any denominator zero: - \( w + 4 = -\frac{32}{3} + 4 = -\frac{32}{3} + \frac{12}{3} = -\frac{20}{3} \neq 0 \) - \( w + 3 = -\frac{32}{3} + 3 = -\frac{32}{3} + \frac{9}{3} = -\frac{23}{3} \neq 0 \) - \( w - 2 = -\frac{32}{3} - 2 = -\frac{32}{3} - \frac{6}{3} = -\frac{38}{3} \neq 0 \) Since none of the denominators are zero, the solution is valid. **Final Answer:** \[ w = -\frac{32}{3} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's solve the equation step by step: Given equation: \[ \frac{4}{w^{2}+2w-8} + \frac{3}{w^{2}+w-6} = \frac{4}{w^{2}+7w+12} \] First, we need to factor the denominators: 1. For \(w^{2} + 2w - 8\), we look for two numbers that multiply to \(-8\) and add to \(2\). The factors are \(4\) and \(-2\): \[ w^{2} + 2w - 8 = (w + 4)(w - 2) \] 2. For \(w^{2} + w - 6\), we find factors that multiply to \(-6\) and add to \(1\). The factors are \(3\) and \(-2\): \[ w^{2} + w - 6 = (w + 3)(w - 2) \] 3. For \(w^{2} + 7w + 12\), we look for two numbers that multiply to \(12\) and add to \(7\). The factors are \(3\) and \(4\): \[ w^{2} + 7w + 12 = (w + 3)(w + 4) \] Now rewrite the equation by substituting the factored forms: \[ \frac{4}{(w + 4)(w - 2)} + \frac{3}{(w + 3)(w - 2)} = \frac{4}{(w + 3)(w + 4)} \] Next, find a common denominator, which is \((w + 4)(w - 2)(w + 3)\). Multiply both sides by the common denominator: \[ 4(w + 3) + 3(w + 4) = 4(w - 2) \] Expanding both sides: First, the left side: \[ 4(w + 3) = 4w + 12 \] \[ 3(w + 4) = 3w + 12 \] Therefore, \[ 4w + 12 + 3w + 12 = 7w + 24 \] Now, the right side: \[ 4(w - 2) = 4w - 8 \] Setting the two expanded expressions equal to each other: \[ 7w + 24 = 4w - 8 \] Now, solve for \(w\): Subtract \(4w\) from both sides: \[ 3w + 24 = -8 \] Subtract \(24\) from both sides: \[ 3w = -32 \] Now divide by \(3\): \[ w = -\frac{32}{3} \] Thus, the solution to the equation is: \[ w = -\frac{32}{3} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad