Pregunta
upstudy study bank question image url

Given the following linear inequality: \( -6<2 x-4 \leq 2 \) Represent your solution on a number line.

Ask by Turner Barker. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the inequality \( -6 < 2x - 4 \leq 2 \) is \( -1 < x \leq 3 \). On the number line, this is represented by an open circle at -1 and a closed circle at 3, with the line shaded between them.

Solución

To solve the inequality \( -6 < 2x - 4 \leq 2 \) and represent its solution on a number line, follow these steps: ### Step 1: Solve the Inequality 1. **Start with the original inequality:** \[ -6 < 2x - 4 \leq 2 \] 2. **Add 4 to all parts of the inequality to isolate the term with \( x \):** \[ -6 + 4 < 2x - 4 + 4 \leq 2 + 4 \] \[ -2 < 2x \leq 6 \] 3. **Divide all parts by 2 to solve for \( x \):** \[ \frac{-2}{2} < \frac{2x}{2} \leq \frac{6}{2} \] \[ -1 < x \leq 3 \] ### Step 2: Represent the Solution on a Number Line The solution \( -1 < x \leq 3 \) can be visualized on a number line as follows: 1. **Draw a horizontal line and mark points for \( -1 \) and \( 3 \).** 2. **Use an open circle (◯) at \( -1 \) to indicate that \( -1 \) is **not** included in the solution.** 3. **Use a closed (filled) circle (●) at \( 3 \) to indicate that \( 3 \) **is** included in the solution.** 4. **Shade the region between \( -1 \) and \( 3 \) to show all real numbers \( x \) that satisfy the inequality.** Here's a visual representation: ``` <---|---------|=========● -1 3 ``` - **◯ at -1:** Not included - **● at 3:** Included - **Shaded line between -1 and 3:** All real numbers \( x \) such that \( -1 < x \leq 3 \) ### Summary - **Solution Set:** \( -1 < x \leq 3 \) - **Number Line Representation:** ``` <---|---------|=========● -1 3 ``` This indicates all real numbers greater than -1 and up to and including 3 satisfy the original inequality.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the linear inequality \( -6<2 x-4 \leq 2 \), we will break it down into two parts: solving \( 2x - 4 > -6 \) and \( 2x - 4 \leq 2 \). 1. **For \( 2x - 4 > -6 \)**: Add 4 to both sides: \[ 2x > -2 \] Now divide by 2: \[ x > -1 \] 2. **For \( 2x - 4 \leq 2 \)**: Add 4 to both sides: \[ 2x \leq 6 \] Divide by 2: \[ x \leq 3 \] Now, combining these results, we find: \[ -1 < x \leq 3 \] On the number line, this means that \( x \) can take any value greater than -1 and up to and including 3. You would represent this with an open circle at -1 (since -1 is not included) and a closed circle at 3 (since 3 is included). The segment on the number line between these points shows the range of possible values for \( x \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad