Pregunta

Consider a region bounded by the x-axis and the line \( y = 2x \) from \( x = 0 \) to \( x = 1 \). If this shape is revolved around the x-axis, what is the volume of the resulting solid using triangular cross-sections perpendicular to the x-axis?

Ask by Warner Mills. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{4\pi}{3} \) cubic units.

Solución

To find the volume of the solid formed by revolving the region bounded by the x-axis and the line \( y = 2x \) from \( x = 0 \) to \( x = 1 \) around the x-axis using triangular cross-sections perpendicular to the x-axis, we can use the method of disks. The formula for the volume of a solid formed by revolving a region around the x-axis using the method of disks is given by: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] In this case, the function \( f(x) = 2x \) represents the line \( y = 2x \), and the limits of integration are from \( x = 0 \) to \( x = 1 \). Substitute \( f(x) = 2x \) into the formula for the volume of the solid: \[ V = \pi \int_{0}^{1} (2x)^2 \, dx \] Now, we can calculate the integral to find the volume of the solid. Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\pi \times \int_{0}^{1} \left(2x\right)^{2} dx\) - step1: Evaluate the integral: \(\pi \times \frac{4}{3}\) - step2: Multiply: \(\frac{\pi \times 4}{3}\) - step3: Multiply: \(\frac{4\pi }{3}\) The volume of the solid formed by revolving the region bounded by the x-axis and the line \( y = 2x \) from \( x = 0 \) to \( x = 1 \) around the x-axis using triangular cross-sections perpendicular to the x-axis is \( \frac{4\pi}{3} \) cubic units.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the volume of the solid formed by revolving the region bounded by the x-axis and the line \( y = 2x \) from \( x = 0 \) to \( x = 1 \) around the x-axis, we can use the method of cylindrical shells or the disk method for integration. Given the line \( y = 2x \), we can express the height of the triangular cross-section at a given value of \( x \). The area of the triangular cross-section (with base on the x-axis and height along the line \( y = 2x \)) can be calculated as follows: 1. The triangle has a height \( h = 2x \). 2. The base of the triangle runs from \( x \) to 0 on the x-axis. 3. The area \( A \) of the triangle can be calculated as: \[ A = \frac{1}{2} \text{(base)} \times \text{(height)} = \frac{1}{2} (x - 0)(2x) = \frac{1}{2} \cdot 2x \cdot x = x^2. \] To find the volume of the solid, we will integrate the area of the triangular cross-sections from \( x = 0 \) to \( x = 1 \): \[ V = \int_{0}^{1} A \, dx = \int_{0}^{1} x^2 \, dx. \] Calculating the integral: \[ V = \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}. \] Thus, the volume of the resulting solid when the region is revolved around the x-axis is: \[ \boxed{\frac{1}{3}}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad