Pregunta
upstudy study bank question image url

Select the correct answer. Sam is installing a walkway around a rectangular flower patch in his garden. The flower patch is 12 feet long and 6 feet wide. The width of the walkway is \( x \) feet. Sam created function \( A \) to represent the total area taken up by the flower patch and walkway by multiplying the functions modeling the new total length and width. A(x) \( =4 x^{2}+36 x+72 \) What does \( 4 x^{2}+36 x \) represent in this function? A. the total area of the flower patch B. the total area of the walkway C. the area of the walkway along the length of the flower patch D. the area of the walkway along the width of the flower patch Next

Ask by Gibson Clark. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 4x^{2} + 36x \) represents the total area of the walkway.

Solución

To determine what \( 4x^{2} + 36x \) represents in the function \( A(x) = 4x^{2} + 36x + 72 \), let's break down the problem: 1. **Flower Patch Dimensions:** - Length: 12 feet - Width: 6 feet - **Area of Flower Patch:** \( 12 \times 6 = 72 \) square feet 2. **Walkway Dimensions:** - Width of Walkway: \( x \) feet - **Total Length Including Walkway:** \( 12 + 2x \) feet - **Total Width Including Walkway:** \( 6 + 2x \) feet - **Total Area (Flower Patch + Walkway):** \[ (12 + 2x)(6 + 2x) = 72 + 24x + 12x + 4x^{2} = 72 + 36x + 4x^{2} \] This matches the given function \( A(x) = 4x^{2} + 36x + 72 \). 3. **Interpreting \( 4x^{2} + 36x \):** - Subtracting the area of the flower patch from the total area: \[ A(x) - 72 = 4x^{2} + 36x \] - Therefore, \( 4x^{2} + 36x \) represents the **total area of the walkway** around the flower patch. **Correct Answer:** **B. the total area of the walkway**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The expression \( 4x^{2}+36x \) represents the area contribution of the walkway, as it accounts for how the walkway extends the length and width of the flower patch. Specifically, when we expand the area function \( A(x) \), this part indicates the new area created by including the walkway around the existing dimensions of the flower patch. Thus, the correct answer is B: the total area of the walkway. Now, let’s dive a bit deeper into the fun stuff! Did you know that the mathematical concept behind these types of area problems often leads to quadratic functions? Quadratic functions are not only essential in geometry but also appear in various fields such as physics and economics. They help model scenarios like projectile motion and profit maximization! And if you’re intrigued by the geometry of gardens, you might enjoy exploring concepts like the Golden Ratio or Fibonacci Sequence in nature! They not only elevate garden designs but can also inspire art and architecture, as they create visually pleasing proportions. Happy exploring!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad