Pregunta
upstudy study bank question image url

Find the greatest common factor. \( 9 \mathrm{~m}^{3}, 6 \mathrm{~m}^{3} \) Write your answer as a constant times a product of single variables raised to exnonents.

Ask by Warner Hamilton. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The greatest common factor is \( 3m^{3} \).

Solución

To find the greatest common factor (GCF) of the monomials \( 9m^3 \) and \( 6m^3 \), follow these steps: 1. **Factor the coefficients:** - The coefficients are 9 and 6. - The GCF of 9 and 6 is **3**. 2. **Factor the variables:** - Both monomials have the variable \( m \) raised to the power of 3. - The GCF for the variables is \( m^3 \). 3. **Combine the GCF of the coefficients and the variables:** - Multiply the GCF of the coefficients by the GCF of the variables. - \( \text{GCF} = 3 \times m^3 = 3m^3 \) **Final Answer:** \[ 3m^{3} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the greatest common factor (GCF) of \(9 \mathrm{~m}^{3}\) and \(6 \mathrm{~m}^{3}\), we start by factoring the constants and the variable parts separately. The factors of \(9\) are \(1, 3, 9\), and the factors of \(6\) are \(1, 2, 3, 6\). The greatest common factor of the constants \(9\) and \(6\) is \(3\). For the variable part, both have \(m^{3}\), so we take the exponent of \(m\) as is since they are equal. Thus, the GCF is \(3 \mathrm{~m}^{3}\). So, your answer is \(3 \mathrm{~m}^{3}\). Did you know that finding the GCF is a key step in simplifying fractions? When you break down numbers to their GCF, it becomes not just a number, but a gateway to understanding relationships between multiple values! To explore more about the importance of GCF, check out resources like math tutorial websites or algebra textbooks that emphasize factorization techniques. They'll guide you through not just GCF, but also learning how to use it effectively in problem-solving!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad