a) \( \frac{3}{7}+\left(\frac{f}{4}\right)^{3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To tackle the expression \( \frac{3}{7} + \left(\frac{f}{4}\right)^{3} \), it's important to remember how to work with fractions and exponents. The term \( \left(\frac{f}{4}\right)^{3} \) means you first take \( \frac{f}{4} \) and multiply it by itself three times, yielding \( \frac{f^3}{4^3} = \frac{f^3}{64} \). So your expression can be rewritten as \( \frac{3}{7} + \frac{f^3}{64} \). To combine these fractions, you'll need a common denominator, which in this case would be 448 (the least common multiple of 7 and 64). For combining the fractions, we'll convert each term: 1. \( \frac{3}{7} \) becomes \( \frac{3 \times 64}{7 \times 64} = \frac{192}{448} \). 2. \( \frac{f^3}{64} \) becomes \( \frac{f^3 \times 7}{64 \times 7} = \frac{7f^3}{448} \). Now you can add them up: \[ \frac{192}{448} + \frac{7f^3}{448} = \frac{192 + 7f^3}{448}. \] So the final simplified expression is \( \frac{192 + 7f^3}{448} \).