Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 55 and standard deviation 10 . What is the probability that \( X \) is between 35 and 75 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Welch Paul. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 35 and 75 is 0.950.

Solución

The random variable \( X \) is normally distributed with a mean (\( \mu \)) of 55 and a standard deviation (\( \sigma \)) of 10. We want to find the probability that \( X \) is between 35 and 75, i.e., \( P(35 \leq X \leq 75) \). First, determine how many standard deviations away 35 and 75 are from the mean: \[ \frac{35 - 55}{10} = -2 \quad \text{and} \quad \frac{75 - 55}{10} = 2 \] This means we are looking for \( P(\mu - 2\sigma \leq X \leq \mu + 2\sigma) \). According to the \( 68-95-99.7 \) rule (also known as the empirical rule): - Approximately **95%** of the data lies within **2 standard deviations** of the mean in a normal distribution. Therefore, the probability that \( X \) is between 35 and 75 is approximately **0.95** when expressed as a decimal. **Answer:** 0.950

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability that \( X \) is between 35 and 75, we can use the 68-95-99.7 rule, which states that approximately 68% of data falls within one standard deviation from the mean, about 95% within two standard deviations, and about 99.7% within three standard deviations. First, calculate the standard deviations from the mean: - The mean (\( \mu \)) is 55. - The standard deviation (\( \sigma \)) is 10. Now, find the range: - One standard deviation below the mean: \( 55 - 10 = 45 \) - One standard deviation above the mean: \( 55 + 10 = 65 \) This means approximately 68% of the data falls between 45 and 65. Next, calculate two standard deviations: - Two standard deviations below the mean: \( 55 - 20 = 35 \) - Two standard deviations above the mean: \( 55 + 20 = 75 \) According to the 68-95-99.7 rule, about 95% of the data falls between two standard deviations from the mean. Thus, the probability that \( X \) is between 35 and 75 is approximately 0.950, or 95%.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad