Pregunta
upstudy study bank question image url

Which satements are tue abour the function \( f(x)=-|x|-2 \) ? Check all that apply. - The parent function and this function and this function haven in, the same same range. - The parent function and this function have the same domain. - The range of the function is all real numbers less than or equal to -2 . - The domain of the function is all real numbers greater than or equal to -2 . - There are no values from the domain of the parent function that are also in the domain of this function.

Ask by Reeves Logan. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The true statements are: - The parent function and this function have the same domain. - The range of the function is all real numbers less than or equal to -2.

Solución

Let's analyze each statement regarding the function \( f(x) = -|x| - 2 \) and determine which ones are true. 1. **The parent function and this function have the same range.** - **False.** - **Parent Function (\( g(x) = |x| \)):** - **Domain:** All real numbers (\( \mathbb{R} \)). - **Range:** \( y \geq 0 \). - **Given Function (\( f(x) = -|x| - 2 \)):** - **Domain:** All real numbers (\( \mathbb{R} \)). - **Range:** \( y \leq -2 \). - **Conclusion:** The ranges are different. 2. **The parent function and this function have the same domain.** - **True.** - Both the parent function \( g(x) = |x| \) and the given function \( f(x) = -|x| - 2 \) have a domain of all real numbers (\( \mathbb{R} \)). 3. **The range of the function is all real numbers less than or equal to -2.** - **True.** - For \( f(x) = -|x| - 2 \): - The smallest value of \( |x| \) is 0 (when \( x = 0 \)). - \( f(0) = -0 - 2 = -2 \). - As \( |x| \) increases, \( f(x) \) decreases, making the range \( y \leq -2 \). 4. **The domain of the function is all real numbers greater than or equal to -2.** - **False.** - The domain of \( f(x) = -|x| - 2 \) is all real numbers (\( \mathbb{R} \)), not restricted to numbers greater than or equal to -2. 5. **There are no values from the domain of the parent function that are also in the domain of this function.** - **False.** - Both the parent function and \( f(x) \) share the same domain of all real numbers (\( \mathbb{R} \)). **Summary of True Statements:** - The parent function and this function have the same domain. - The range of the function is all real numbers less than or equal to -2. Answer: All except statements 2 and 3 are false. The true statements are statements 2 and 3.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The function \( f(x) = -|x| - 2 \) is a transformation of the parent absolute value function \( g(x) = |x| \). Now, let's dig in: The range of the parent function \( g(x) \) is all real numbers greater than or equal to 0, while the range of \( f(x) \) shifts downward to all real numbers less than or equal to -2. So, yes, the range of the function is indeed all real numbers less than or equal to -2! When it comes to the domain, both functions share the same domain of all real numbers, since the absolute value function accepts any real input. So, they don't differ there either. In a nutshell: the statement about the range being less than or equal to -2 is true, and the domain statement is false because both functions have all real numbers as their domain! Keep on exploring those functions!

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad