Pregunta
upstudy study bank question image url

Determining the Dondailn and Range of an AbSolute Value Function Which statements are true about the function \( f(x)=-|x|-2 \) ? check all that apply. The parent function and this function open in, the same direction. The parent function and this function have the same range. The parent function and this function have the same domain. The range of the function is all real numbers less than or equal to -2 . The domain of the function is all real numbers greater than or equal to -2 . Thes from the domain of the parent function that are also in the domain of this function.

Ask by Edwards Gibbs. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The parent function and this function have the same domain. The range of the function is all real numbers less than or equal to –2.

Solución

Let's analyze each statement regarding the function \( f(x) = -|x| - 2 \) and determine which ones are true. ### 1. **The parent function and this function open in the same direction.** - **Parent Function:** \( f(x) = |x| \) (opens upwards). - **Given Function:** \( f(x) = -|x| - 2 \) (opens downwards due to the negative sign). **Conclusion:** **False** ### 2. **The parent function and this function have the same range.** - **Parent Function Range:** \( y \geq 0 \). - **Given Function Range:** \( y \leq -2 \). **Conclusion:** **False** ### 3. **The parent function and this function have the same domain.** - **Parent Function Domain:** All real numbers (\( \mathbb{R} \)). - **Given Function Domain:** All real numbers (\( \mathbb{R} \)). **Conclusion:** **True** ### 4. **The range of the function is all real numbers less than or equal to -2.** - **Given Function:** \( f(x) = -|x| - 2 \). - When \( x = 0 \), \( f(0) = -0 - 2 = -2 \). - As \( |x| \) increases, \( f(x) \) decreases without bound. **Conclusion:** **True** ### 5. **The domain of the function is all real numbers greater than or equal to -2.** - **Given Function Domain:** All real numbers (\( \mathbb{R} \)). - The statement incorrectly describes the **range**, not the **domain**. **Conclusion:** **False** ### 6. **Thes from the domain of the parent function that are also in the domain of this function.** - This statement seems to be incomplete or unclear. If it implies that the domains overlap, it's redundant since both domains are the same. **Conclusion:** **Unclear/False** --- ### **Summary of True Statements:** - **The parent function and this function have the same domain.** - **The range of the function is all real numbers less than or equal to -2.** **Final Answer:** - The parent function and this function have the same domain. - The range of the function is all real numbers less than or equal to –2.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's dive into the world of absolute value functions! The function \( f(x) = -|x| - 2 \) is actually a transformation of the parent function \( g(x) = |x| \). Instead of opening upwards, this function opens downwards because of the negative sign in front of the absolute value. It's like flipping the original function upside down and then taking a step downwards – always a quirky move! Now, the range of our function \( f(x) \) is all real numbers less than or equal to -2. This is because the highest point on this graph is at \( -2 \) when \( x = 0 \), and as you move away from the origin, the values decrease. As for the domain, it remains the same as the parent function, covering all real numbers. After all, absolute values are friendly to all \( x \) values!

preguntas relacionadas

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad