Pregunta
Write the standard form of the equation of the circle with the given center and radius. Center \( (0,0), \mathrm{r}=4 \) The equation for the circle in standard form is (Simplify your answer.)
Ask by Bob Hart. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The standard form of the equation of the circle is \( x^2 + y^2 = 16 \).
Solución
To write the standard form of the equation of a circle, we'll use the following formula:
\[
(x - h)^2 + (y - k)^2 = r^2
\]
where \((h, k)\) is the center of the circle and \(r\) is its radius.
**Given:**
- Center \((h, k) = (0, 0)\)
- Radius \(r = 4\)
**Step 1: Substitute the given values into the formula.**
\[
(x - 0)^2 + (y - 0)^2 = 4^2
\]
**Step 2: Simplify the equation.**
\[
x^2 + y^2 = 16
\]
**Final Answer:**
\[
x^2 + y^2 = 16
\]
This is the standard form of the equation of the circle with center at the origin \((0, 0)\) and a radius of \(4\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
The equation for a circle in standard form is given by \( (x - h)^2 + (y - k)^2 = r^2 \), where \((h,k)\) is the center and \(r\) is the radius. For your circle with center \( (0,0) \) and radius \( 4 \), this becomes \( (x - 0)^2 + (y - 0)^2 = 4^2 \). Simplifying this, we have \( x^2 + y^2 = 16 \). So, the equation of the circle in standard form is \( x^2 + y^2 = 16 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium