Pregunta
upstudy study bank question image url

Which describes how the parent function, \( f(x)=|x| \), is transformed to show the function \( f(x)=0.1|x-3| \) ? It is wider and shifted 3 units to the left. It is wider and shifted 3 units to the right. It is narrower and shifted 3 units to the left. It is narrower and shifted 3 units to the right.

Ask by Rogers Barber. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = 0.1|x-3| \) is wider and shifted 3 units to the right compared to the parent function \( f(x) = |x| \).

Solución

The transformation from the parent function \( f(x) = |x| \) to the function \( f(x) = 0.1|x-3| \) involves two key changes: 1. **Vertical Scaling (Widening):** - The coefficient \( 0.1 \) in front of the absolute value function compresses the graph vertically. However, from the perspective of the graph's appearance, this makes the "V" shape wider compared to the parent function. 2. **Horizontal Shift (Right Shift):** - The expression \( |x - 3| \) shifts the graph horizontally. Specifically, subtracting 3 inside the absolute value translates the graph **3 units to the right**. Combining these transformations, the function \( f(x) = 0.1|x-3| \) is **wider** than the parent function and shifted **3 units to the right**. **Correct Answer:** It is wider and shifted 3 units to the right.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The parent function \( f(x) = |x| \) is transformed to \( f(x) = 0.1|x-3| \) by first shifting the graph 3 units to the right due to the \(-3\) inside the absolute value. Furthermore, the \(0.1\) coefficient causes the graph to be wider than the original, as it compresses the y-values, making the function more flat. So, the correct transformation is that it's wider and shifted 3 units to the right. Another way to visualize this is to think about how absolute value functions typically create a "V" shape. The "0.1" means that the arms of the "V" are more spread out compared to \( f(x) = |x| \), which gives the function a softer, wider appearance as it stretches out. Plus, moving rightwards aligns it nicely with the value at \(x = 3\)!

preguntas relacionadas

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad