20) \( \left(\frac{x^{-7} y^{-2} z^{10}}{\left(x^{-1} y^{-2} z^{0} \cdot\left(x^{7} y^{8} z^{-3}\right)^{10}\right)^{9}}\right)^{10} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify the expression \( \left(\frac{x^{-7} y^{-2} z^{10}}{\left(x^{-1} y^{-2} z^{0} \cdot\left(x^{7} y^{8} z^{-3}\right)^{10}\right)^{9}}\right)^{10} \), we first need to simplify the denominator. 1. **Simplify the base of the denominator**: - Inside the denominator, we have: \[ x^{-1} y^{-2} z^{0} \cdot \left(x^{7} y^{8} z^{-3}\right)^{10} \] - The term \((x^{7} y^{8} z^{-3})^{10}\) simplifies to \(x^{70} y^{80} z^{-30}\). - Therefore, we can rewrite the expression as: \[ x^{-1} y^{-2} \cdot x^{70} y^{80} z^{-30} \] This combines to: \[ x^{-1 + 70} y^{-2 + 80} z^{-30} = x^{69} y^{78} z^{-30} \] 2. **Raise the whole denominator to the power of 9**: - We need to raise each component to the 9th power, yielding: \[ (x^{69} y^{78} z^{-30})^{9} = x^{621} y^{702} z^{-270} \] 3. **Rewrite the initial expression with the simplified denominator**: - Now our expression looks like: \[ \frac{x^{-7} y^{-2} z^{10}}{x^{621} y^{702} z^{-270}} \] 4. **Simplify the fraction**: - We can rewrite it as: \[ x^{-7 - 621} y^{-2 - 702} z^{10 + 270} = x^{-628} y^{-704} z^{280} \] 5. **Raise the entire fraction to the power of 10**: - Finally, we raise our result to the power of 10, giving: \[ (x^{-628} y^{-704} z^{280})^{10} = x^{-6280} y^{-7040} z^{2800} \] Thus, the simplified expression is: \[ \boxed{x^{-6280} y^{-7040} z^{2800}} \]