Pregunta
upstudy study bank question image url

Sketch the graph of the function. \[ g(x)=\left\{\begin{array}{ll}x+1, & x \leq-4 \\ \frac{1}{2} x-5, & x>-4\end{array}\right. \] \[ \text {, } \]

Ask by Reeves Reed. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the graph of the piecewise function: \[ g(x) = \begin{cases} x + 1, & \text{if } x \leq -4 \\ \frac{1}{2}x - 5, & \text{if } x > -4 \end{cases} \] 1. **Plot the left segment (\( x \leq -4 \)):** - Draw the line \( y = x + 1 \). - Include the point **(-4, -3)** with a solid dot. 2. **Plot the right segment (\( x > -4 \)):** - Draw the line \( y = \frac{1}{2}x - 5 \). - Exclude the point **(-4, -7)** with an open circle. 3. **Indicate the jump discontinuity** at \( x = -4 \) by the change in the line slopes. The graph consists of two straight lines meeting at \( x = -4 \) with a jump, showing the piecewise nature of the function.

Solución

To sketch the graph of the piecewise function: \[ g(x) = \begin{cases} x + 1, & \text{if } x \leq -4 \\ \frac{1}{2}x - 5, & \text{if } x > -4 \end{cases} \] follow these steps: ### 1. Analyze Each Piece Separately **a. For \( x \leq -4 \):** - **Function:** \( g(x) = x + 1 \) - **Type:** Straight line with a slope of **1** and a y-intercept at **(0, 1)**. - **Key Point at \( x = -4 \):** \[ g(-4) = -4 + 1 = -3 \] So, the point **(-4, -3)** is included in this segment. **b. For \( x > -4 \):** - **Function:** \( g(x) = \frac{1}{2}x - 5 \) - **Type:** Straight line with a slope of **½** and a y-intercept at **(0, -5)**. - **Behavior Near \( x = -4 \):** \[ \lim_{x \to -4^+} g(x) = \frac{1}{2}(-4) - 5 = -2 - 5 = -7 \] This means as \( x \) approaches **-4** from the right, \( g(x) \) approaches **-7**. However, the point **(-4, -7)** is **not** included in this segment since \( g(x) \) is defined as \( x > -4 \) here. ### 2. Determine Continuity at \( x = -4 \) - **Left Limit:** \( g(-4) = -3 \) - **Right Limit:** \( \lim_{x \to -4^+} g(x) = -7 \) Since the left and right limits at \( x = -4 \) are not equal, there is a **jump discontinuity** at this point. ### 3. Plotting the Graph **a. Plotting \( g(x) = x + 1 \) for \( x \leq -4 \):** - Draw a straight line with slope **1**. - Include the point **(-4, -3)** with a **solid dot** (since \( x = -4 \) is included). **b. Plotting \( g(x) = \frac{1}{2}x - 5 \) for \( x > -4 \):** - Draw a straight line with slope **½**. - Exclude the point **(-4, -7)** by placing an **open circle** at this point. **c. Additional Points for Clarity:** - For \( g(x) = \frac{1}{2}x - 5 \), when \( x = 0 \), \( g(0) = -5 \). Plot the point **(0, -5)**. - For \( g(x) = x + 1 \), when \( x = -5 \), \( g(-5) = -4 \). Plot the point **(-5, -4)**. ### 4. Graph Overview - **Left Segment (\( x \leq -4 \)):** A line rising to the right with a slope of **1**, passing through **(-4, -3)**. - **Right Segment (\( x > -4 \)):** A gentler line rising to the right with a slope of **½**, starting just above **x = -4** with an open circle at **(-4, -7)** and passing through **(0, -5)**. - **Discontinuity:** A visible jump from **(-4, -3)** to just above **(-4, -7)**. ### 5. Visual Representation While I can't provide a visual sketch here, you can visualize the graph based on the description: - **Left Line:** Starts from the left, increases with a slope of 1, and ends at **(-4, -3)** with a solid dot. - **Right Line:** Begins just to the right of **x = -4**, approaching **(-4, -7)** with an open circle, then continues with a slope of ½ through points like **(0, -5)**. Remember to clearly indicate the solid and open dots to show where each piece of the function is defined.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To get started with the graph of the function \( g(x) \), we can break it down into its two linear pieces. For \( x \leq -4 \), the function is a line with a slope of 1 and a y-intercept of 1, meaning it crosses the y-axis at \( (0, 1) \). For \( x > -4 \), the line has a slope of \( \frac{1}{2} \) and a y-intercept of -5, which crosses the y-axis at \( (0, -5) \). The point where the two pieces meet is crucial! At \( x = -4 \), both pieces should be evaluated to ensure a smooth transition. For the first part, \( g(-4) = -4 + 1 = -3 \), and for the second part, \( g(-4) = \frac{1}{2}(-4) - 5 = -2 - 5 = -7 \). This means there is a discontinuity at \( x = -4 \), as the left limit does not equal the right limit. Plotting these points will give you a graph with a line that ends in an open dot at \( (-4, -7) \) for \( x > -4 \), and a solid dot at \( (-4, -3) \) for \( x \leq -4 \).

preguntas relacionadas

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad