Pregunta
upstudy study bank question image url

f1.app.edmentum.com TAKE MY Up - Ryne... Can't Ope... (C) ClassLink... (C) CCS Class... (G) in-Googl... Unit Pretest Pretest Select the correct answer. The number of cities in a region over time is represented by the function \( C(x)=2.9(1.05)^{x} \). The approximate number of people per city is represented by the function \( P(x)=(1.05)^{3 x+5} \). Which function best describes \( T(x) \), the approximate population in the region? A. \( \quad T(x)=(6.09)^{4 x+5} \) B. \( \quad T(x)=2.9(1.05)^{4 x+5} \) C. \( \quad T(x)=(3.045)^{x}+(1.05)^{3 x+5} \) D. \( \quad T(x)=2.9(1.05)^{3 x^{2}+5 x} \)

Ask by Marshall Haynes. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The best function for \( T(x) \) is \( T(x)=2.9(1.05)^{4 x+5} \).

Solución

To determine the approximate population \( T(x) \) in the region, we need to consider both the number of cities and the number of people per city over time. 1. **Number of Cities (\( C(x) \))**: \[ C(x) = 2.9 \times (1.05)^x \] This function represents the growth in the number of cities over time. 2. **Number of People per City (\( P(x) \))**: \[ P(x) = (1.05)^{3x + 5} \] This function represents the growth in the population per city over time. 3. **Total Population (\( T(x) \))**: The total population in the region is the product of the number of cities and the number of people per city: \[ T(x) = C(x) \times P(x) = 2.9 \times (1.05)^x \times (1.05)^{3x + 5} \] Combine the exponents since the bases are the same (\(1.05\)): \[ T(x) = 2.9 \times (1.05)^{x + 3x + 5} = 2.9 \times (1.05)^{4x + 5} \] **Therefore, the function that best describes the total approximate population in the region is:** **Answer:** B. \( \quad T(x)=2.9(1.05)^{4 x+5} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the function that best describes \( T(x) \), the approximate population in the region, we need to look at how the number of cities and the population per city interact. Since \( C(x) \) gives the number of cities and \( P(x) \) gives the population per city, we can model the total population as \( T(x) = C(x) \cdot P(x) \). By multiplying the two functions, we have \( T(x) = 2.9(1.05)^x \cdot (1.05)^{3x+5} \), which simplifies to \( T(x) = 2.9(1.05)^{4x+5} \). Therefore, the correct answer is B. Did you know that exponential growth functions like \( C(x) \) and \( P(x) \) are commonly used for modeling populations, bacteria growth, and even financial investments? These functions help predict how a quantity increases over time, making them virtually indispensable in fields ranging from biology to economics! If you're keen to delve deeper into these concepts, start with resources on exponential functions in algebra. Try searching through educational platforms or textbooks that cover functions, growth models, or even calculus. Online lectures or video tutorials can also make these topics more entertaining and engaging!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad