Pregunta
upstudy study bank question image url

Consider function \( g \). \( g(x)=\left\{\begin{array}{ll}\left(\frac{1}{2}\right)^{x}+3, & x<0 \\ -x^{2}+2, & x \geq 0\end{array}\right. \) Which statements are true about function \( g \) ? The \( y \)-intercept is 2 . The function is decreasing over its domain except for when \( x=0 \). The function is continuous. As \( x \) approaches positive infinity, \( g(x) \) approaches positive infinity. The domain is all real numbers.

Ask by Tyler Ryan. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( y \)-intercept is 2, the function is decreasing except at \( x = 0 \), and the domain is all real numbers.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

Let’s dive into the function \( g(x) \) and unravel its mysteries! First up, the **y-intercept**: To find it, we evaluate \( g(0) \) since that's where the function crosses the y-axis. From the definition of \( g(x) \), when \( x \geq 0 \), we have \( g(0) = -0^2 + 2 = 2 \). So yes, the y-intercept is indeed 2! As for the **continuity** of function \( g \): We check the limit from the left as \( x \) approaches 0, which gives us \( g(0^-) = \left(\frac{1}{2}\right)^{0} + 3 = 4 \). From the right, we have \( g(0^+) = 2 \). Since these two values don't match, the function is not continuous at \( x = 0 \). Now, about the **decreasing nature** of \( g(x) \): For \( x < 0 \), \( g(x) = \left(\frac{1}{2}\right)^x + 3 \), which is decreasing as it’s an exponential function (specifically with a base less than 1). However, for \( x \geq 0 \), \( g(x) = -x^2 + 2 \) is actually decreasing after reaching its maximum point at \( x = 0 \). So, the overall statement is somewhat true, but slightly misleading since the function increases on \( (-\infty, 0) \) and is decreasing afterwards. Regarding the statement about the function approaching infinity: As \( x \) approaches positive infinity, \( g(x) \) behaves like \( -x^2 + 2 \), which actually approaches negative infinity, not positive. Hence, this statement is false. Finally, oh yes, the **domain**: The function is defined for all real numbers—no gaps here! So, the domain is indeed all real numbers. In summary, the only true statements are about the y-intercept being 2 and the domain being all real numbers. They’re the shining stars in this function's analysis!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad