Pregunta
upstudy study bank question image url

5) \( \begin{array}{l}(-6 x+y=-8) \\ (12 x-9 y=30)\end{array} \)

Ask by Howell Hills. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the system of equations is \( x = 1 \) and \( y = -2 \).

Solución

To solve the system of linear equations: \[ \begin{cases} -6x + y = -8 \quad \text{(Equation 1)} \\ 12x - 9y = 30 \quad \text{(Equation 2)} \end{cases} \] we can use the **substitution method**. Here's a step-by-step solution: ### Step 1: Solve Equation 1 for \( y \) Starting with Equation 1: \[ -6x + y = -8 \] Add \( 6x \) to both sides to isolate \( y \): \[ y = 6x - 8 \] ### Step 2: Substitute \( y \) into Equation 2 Now, substitute \( y = 6x - 8 \) into Equation 2: \[ 12x - 9y = 30 \] Plugging in \( y \): \[ 12x - 9(6x - 8) = 30 \] ### Step 3: Simplify and Solve for \( x \) Expand the equation: \[ 12x - 54x + 72 = 30 \] Combine like terms: \[ -42x + 72 = 30 \] Subtract 72 from both sides: \[ -42x = 30 - 72 \] \[ -42x = -42 \] Divide both sides by -42: \[ x = \frac{-42}{-42} = 1 \] ### Step 4: Find \( y \) Using the Value of \( x \) Now that we have \( x = 1 \), substitute it back into the expression for \( y \): \[ y = 6x - 8 \] \[ y = 6(1) - 8 \] \[ y = 6 - 8 = -2 \] ### Solution The solution to the system of equations is: \[ x = 1 \quad \text{and} \quad y = -2 \] ### Verification Let's verify the solution by plugging \( x = 1 \) and \( y = -2 \) back into both equations. **Equation 1:** \[ -6(1) + (-2) = -6 - 2 = -8 \quad \checkmark \] **Equation 2:** \[ 12(1) - 9(-2) = 12 + 18 = 30 \quad \checkmark \] Both equations are satisfied, confirming that \( x = 1 \) and \( y = -2 \) is the correct solution.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that solving systems of equations dates back to ancient civilizations? Babylonian mathematicians were among the first to work with simultaneous equations using geometrical methods! They tackled problems such as land division and trade calculations, laying the groundwork for algebra as we know it today. Now, when tackling a system of equations like the one you've got, always check for simpler methods first, like substitution or elimination. A common mistake is mixing up signs while performing operations. Double-check your calculations with example values to ensure that both equations are satisfied as you find the solution!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad