Pregunta
upstudy study bank question image url

\( \$ 1000 \) were deposited into an account with a \( 7 \% \) interest rate, compounded continuously. How many years was it in the bank if the current amount is \( \$ 2500 \) ? \[ \mathrm{t}=[\text { ? ] years } \]

Ask by Boone Munoz. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It took approximately 13.09 years for the \$1000 deposit to grow to \$2500 with a 7% continuous interest rate.

Solución

To determine how many years the money was in the bank with continuous compounding, we can use the formula for continuous compound interest: \[ A = P \cdot e^{rt} \] Where: - \( A \) is the amount of money accumulated after \( t \) years, including interest. - \( P \) is the principal amount (initial deposit). - \( r \) is the annual interest rate (in decimal). - \( t \) is the time the money is invested for, in years. - \( e \) is the base of the natural logarithm, approximately equal to 2.71828. Given: - \( A = \$2500 \) - \( P = \$1000 \) - \( r = 7\% = 0.07 \) Plugging these values into the formula: \[ 2500 = 1000 \cdot e^{0.07t} \] 1. **Divide both sides by 1000:** \[ 2.5 = e^{0.07t} \] 2. **Take the natural logarithm of both sides to solve for \( t \):** \[ \ln(2.5) = 0.07t \] 3. **Solve for \( t \):** \[ t = \frac{\ln(2.5)}{0.07} \] 4. **Calculate the value:** \[ \ln(2.5) \approx 0.9163 \] \[ t \approx \frac{0.9163}{0.07} \approx 13.09 \text{ years} \] **Answer:** Approximately 13.09 years were required for the deposit to grow to \$2500.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how many years the money was in the bank, we can use the formula for continuous compounding, which is given by: \[ A = Pe^{rt} \] Where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial deposit or investment), - \( r \) is the annual interest rate (decimal), - \( e \) is the base of the natural logarithm (approximately equal to 2.71828), - \( t \) is the number of years the money is invested or borrowed for. Plugging in the given values into the formula we have: \[ 2500 = 1000 e^{0.07t} \] Dividing both sides by 1000: \[ 2.5 = e^{0.07t} \] Now we take the natural logarithm (ln) of both sides: \[ \ln(2.5) = 0.07t \] Now, solve for \( t \): \[ t = \frac{\ln(2.5)}{0.07} \] Calculating \( \ln(2.5) \): \[ \ln(2.5) \approx 0.9163 \] Now, substituting back: \[ t = \frac{0.9163}{0.07} \approx 13.09 \] Therefore, the money was in the bank for approximately \( 13.09 \) years. \[ \mathrm{t} \approx 13.1 \text{ years} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad