Pregunta
upstudy study bank question image url

Which transformations of RST will result in the same image? Check all that apply. a reflection over the \( y \)-axis and then a translation 2 units right a \( 180^{\circ} \) rotation about the origin, then a translation 2 units right, and then a reflection over the \( x \)-axis a reflection over the \( y \)-axis and then a translation 2 units left a \( 180^{\circ} \) rotation about the origin, then a translation 2 units left, and then a reflection over the \( x \)-axis a reflection over the \( x \)-axis and then a translation 2 units right a reflection over the \( x \)-axis and then a translation 2 units left Save and Exit

Ask by Graham Young. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Options a, b, c, and d all result in the same image.

Solución

To determine which sequences of transformations result in the same image, we'll analyze each option step by step. We'll represent each transformation mathematically to see if different sequences yield identical final transformations. ### Transformation Breakdown: 1. **Reflection over the \( y \)-axis and then a translation 2 units right** - **Reflection over \( y \)-axis:** \( (x, y) \rightarrow (-x, y) \) - **Translation 2 units right:** \( (-x, y) \rightarrow (-x + 2, y) \) - **Final Transformation:** \( (-x + 2, y) \) 2. **\( 180^{\circ} \) rotation about the origin, then a translation 2 units right, and then a reflection over the \( x \)-axis** - **\( 180^{\circ} \) rotation:** \( (x, y) \rightarrow (-x, -y) \) - **Translation 2 units right:** \( (-x, -y) \rightarrow (-x + 2, -y) \) - **Reflection over \( x \)-axis:** \( (-x + 2, -y) \rightarrow (-x + 2, y) \) - **Final Transformation:** \( (-x + 2, y) \) 3. **Reflection over the \( y \)-axis and then a translation 2 units left** - **Reflection over \( y \)-axis:** \( (x, y) \rightarrow (-x, y) \) - **Translation 2 units left:** \( (-x, y) \rightarrow (-x - 2, y) \) - **Final Transformation:** \( (-x - 2, y) \) 4. **\( 180^{\circ} \) rotation about the origin, then a translation 2 units left, and then a reflection over the \( x \)-axis** - **\( 180^{\circ} \) rotation:** \( (x, y) \rightarrow (-x, -y) \) - **Translation 2 units left:** \( (-x, -y) \rightarrow (-x - 2, -y) \) - **Reflection over \( x \)-axis:** \( (-x - 2, -y) \rightarrow (-x - 2, y) \) - **Final Transformation:** \( (-x - 2, y) \) 5. **Reflection over the \( x \)-axis and then a translation 2 units right** - **Reflection over \( x \)-axis:** \( (x, y) \rightarrow (x, -y) \) - **Translation 2 units right:** \( (x, -y) \rightarrow (x + 2, -y) \) - **Final Transformation:** \( (x + 2, -y) \) 6. **Reflection over the \( x \)-axis and then a translation 2 units left** - **Reflection over \( x \)-axis:** \( (x, y) \rightarrow (x, -y) \) - **Translation 2 units left:** \( (x, -y) \rightarrow (x - 2, -y) \) - **Final Transformation:** \( (x - 2, -y) \) ### Analysis of Final Transformations: - **Options 1 and 2:** Both result in \( (-x + 2, y) \) → **Same Image** - **Options 3 and 4:** Both result in \( (-x - 2, y) \) → **Same Image** - **Options 5 and 6:** Result in \( (x + 2, -y) \) and \( (x - 2, -y) \) respectively → **Different Images** ### Conclusion: The sequences of transformations that result in the **same image** are: - **a.** Reflection over the \( y \)-axis and then a translation 2 units right - **b.** \( 180^{\circ} \) rotation about the origin, then a translation 2 units right, and then a reflection over the \( x \)-axis - **c.** Reflection over the \( y \)-axis and then a translation 2 units left - **d.** \( 180^{\circ} \) rotation about the origin, then a translation 2 units left, and then a reflection over the \( x \)-axis **Options e and f** produce different images and should **not** be selected. **Final Answer:** All transformations labeled a, b, c, and d result in the same image.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Transformations can be tricky, but it’s fun to see how they interact! For a transformation to yield the same image, it often involves some symmetry or balancing out of movements. If you reflect a triangle over the y-axis and then shift it 2 units to the right, you're shifting away from its original position—so this first option alters the image. When you perform a \( 180^{\circ} \) rotation around the origin and then translate it left, you're effectively rotating it into a completely different quadrant and then moving it, which also results in a different image. However, combining reflections and rotations can get you back to an original location. That’s where you can see some transformations might match. A reflection over the x-axis followed by a shift left will reposition the shape, but not in a way to recreate the starting point. A good trick is to visualize or sketch each transformation step to see how each plays out creatively on the plane. Utilizing grid paper when practicing can help illustrate how moves can alter shapes beautifully!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad