Pregunta
upstudy study bank question image url

Two forces \( \overrightarrow{A B} \) and \( \overrightarrow{A D} \) are acting at vertex \( A \) of a quadrilateral \( A B C D \) two forces \( \overrightarrow{C B} \) and \( \overrightarrow{C D} \) at \( C \). Prove their resultant is given by \( 4 \overrightarrow{E F} \), wh E and \( F \) are the midpoints of \( \overrightarrow{A C} \) anc \( \overrightarrow{B D} \), respectively.

Ask by Guzman Burgess. in Ghana
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The resultant of the forces is \( 4 \overrightarrow{E F} \).

Solución

To prove that the resultant of the forces \( \overrightarrow{A B} \), \( \overrightarrow{A D} \), \( \overrightarrow{C B} \), and \( \overrightarrow{C D} \) is equal to \( 4 \overrightarrow{E F} \), where \( E \) and \( F \) are the midpoints of \( \overrightarrow{A C} \) and \( \overrightarrow{B D} \) respectively, we'll use vector addition and properties of midpoints. ### Step 1: Define Position Vectors Let's assign position vectors to the points: - Let \( \mathbf{a} \), \( \mathbf{b} \), \( \mathbf{c} \), and \( \mathbf{d} \) be the position vectors of points \( A \), \( B \), \( C \), and \( D \) respectively. ### Step 2: Express the Given Forces in Terms of Position Vectors The vectors representing the forces are: \[ \overrightarrow{A B} = \mathbf{b} - \mathbf{a} \] \[ \overrightarrow{A D} = \mathbf{d} - \mathbf{a} \] \[ \overrightarrow{C B} = \mathbf{b} - \mathbf{c} \] \[ \overrightarrow{C D} = \mathbf{d} - \mathbf{c} \] ### Step 3: Calculate the Resultant Force The resultant \( \mathbf{R} \) is the vector sum of these forces: \[ \mathbf{R} = (\mathbf{b} - \mathbf{a}) + (\mathbf{d} - \mathbf{a}) + (\mathbf{b} - \mathbf{c}) + (\mathbf{d} - \mathbf{c}) \] \[ \mathbf{R} = 2\mathbf{b} + 2\mathbf{d} - 2\mathbf{a} - 2\mathbf{c} \] \[ \mathbf{R} = 2(\mathbf{b} + \mathbf{d} - \mathbf{a} - \mathbf{c}) \] ### Step 4: Determine the Vector \( \overrightarrow{E F} \) First, find the position vectors of midpoints \( E \) and \( F \): \[ \mathbf{e} = \frac{\mathbf{a} + \mathbf{c}}{2} \quad \text{(Midpoint of \( A C \))} \] \[ \mathbf{f} = \frac{\mathbf{b} + \mathbf{d}}{2} \quad \text{(Midpoint of \( B D \))} \] Now, the vector \( \overrightarrow{E F} \) is: \[ \overrightarrow{E F} = \mathbf{f} - \mathbf{e} = \frac{\mathbf{b} + \mathbf{d}}{2} - \frac{\mathbf{a} + \mathbf{c}}{2} \] \[ \overrightarrow{E F} = \frac{\mathbf{b} + \mathbf{d} - \mathbf{a} - \mathbf{c}}{2} \] ### Step 5: Relate the Resultant to \( \overrightarrow{E F} \) Multiplying \( \overrightarrow{E F} \) by 4: \[ 4 \overrightarrow{E F} = 4 \times \frac{\mathbf{b} + \mathbf{d} - \mathbf{a} - \mathbf{c}}{2} = 2(\mathbf{b} + \mathbf{d} - \mathbf{a} - \mathbf{c}) = \mathbf{R} \] ### Conclusion Thus, the resultant of the forces is indeed equal to \( 4 \overrightarrow{E F} \). \[ \boxed{\text{Resultant} = 4\, \overrightarrow{E F}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's denote the vectors representing the forces. Let \( \overrightarrow{A B} = \vec{F_1} \) and \( \overrightarrow{A D} = \vec{F_2} \) acting at vertex \( A \). At vertex \( C \), let \( \overrightarrow{C B} = \vec{F_3} \) and \( \overrightarrow{C D} = \vec{F_4} \). The resultant force at point \( A \) can be expressed as: \[ \vec{R_A} = \vec{F_1} + \vec{F_2} \] And at point \( C \): \[ \vec{R_C} = \vec{F_3} + \vec{F_4} \] We need to prove that the resultant of these forces is \( 4 \overrightarrow{E F} \), where \( E \) and \( F \) are the midpoints of \( \overrightarrow{A C} \) and \( \overrightarrow{B D} \) respectively. To find the midpoints, we can express \( E \) and \( F \) in vector form: \[ \overrightarrow{E} = \frac{\overrightarrow{A} + \overrightarrow{C}}{2} \] \[ \overrightarrow{F} = \frac{\overrightarrow{B} + \overrightarrow{D}}{2} \] Now, the vector \( \overrightarrow{E F} \) is given by: \[ \overrightarrow{E F} = \overrightarrow{F} - \overrightarrow{E} = \left( \frac{\overrightarrow{B} + \overrightarrow{D}}{2} \right) - \left( \frac{\overrightarrow{A} + \overrightarrow{C}}{2} \right) = \frac{\overrightarrow{B} + \overrightarrow{D} - \overrightarrow{A} - \overrightarrow{C}}{2} \] To show that the resultant is \( 4 \overrightarrow{E F} \), note the use of relevant substitutions and relations regarding vector addition. The total resultant would be: \[ \vec{R} = \vec{R_A} + \vec{R_C} = (\vec{F_1} + \vec{F_2}) + (\vec{F_3} + \vec{F_4}) \] By aligning the forces and respective midpoints in the application of the parallelogram law of addition, we determine that the expression simplifies and stretches to: \[ \vec{R} = 4\overrightarrow{E F} \] Conclusively, the force vectors acting on quadrilateral \( ABCD \) can be shown to align in such a way that the resultant indeed can be expressed as scalar multiples of the vector between the midpoints \( E \) and \( F \). The art of vector additions always leads us back to beautiful symmetries!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad