Pregunta
Solve the following equation by the square root method. \[ (4 y+6)^{2}=36 \] Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \{\square\} \). (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There nolution.
Ask by Graham Murphy. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The solution set is \(\{-3, 0\}\).
Solución
Solve the equation \( (4y+6)^2=36 \).
Solve the quadratic equation by following steps:
- step0: Solve using square roots:
\(\left(4y+6\right)^{2}=36\)
- step1: Simplify the expression:
\(4y+6=\pm \sqrt{36}\)
- step2: Simplify the expression:
\(4y+6=\pm 6\)
- step3: Separate into possible cases:
\(\begin{align}&4y+6=6\\&4y+6=-6\end{align}\)
- step4: Solve the equation:
\(\begin{align}&y=0\\&y=-3\end{align}\)
- step5: Rewrite:
\(y_{1}=-3,y_{2}=0\)
The solutions to the equation \((4y+6)^2=36\) are \(y=-3\) and \(y=0\).
Therefore, the correct choice is:
A. The solution set is \(\{-3, 0\}\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve the equation \((4y + 6)^{2} = 36\) using the square root method, we start by taking the square root of both sides: \[ 4y + 6 = \pm 6 \] This gives us two separate equations to solve: 1. \(4y + 6 = 6\) 2. \(4y + 6 = -6\) **For the first equation**: \[ 4y + 6 = 6 \\ 4y = 6 - 6 \\ 4y = 0 \\ y = 0 \] **For the second equation**: \[ 4y + 6 = -6 \\ 4y = -6 - 6 \\ 4y = -12 \\ y = -3 \] Thus, the solution set is \(\{0, -3\}\). A. The solution set is \(\{0, -3\}\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium