the following system \( \begin{array}{l}8 x+3 y=2 \\ -2 x+7 y=-16 \\ x=\square \\ y=\square\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the system of equations, we can use the method of substitution or elimination. Let’s eliminate \(x\) by multiplying the first equation by 1 and the second by 4. This gives us: 1. \(8x + 3y = 2\) (unchanged) 2. \(-8x + 28y = -64\) (after multiplying the second equation by 4) Now, adding these equations together cancels out \(x\): \[ (8x - 8x) + (3y + 28y) = 2 - 64 \] \[ 31y = -62 \] Now, divide by 31 to find \(y\): \[ y = -2 \] Substituting \(y = -2\) back into the first equation: \[ 8x + 3(-2) = 2 \] \[ 8x - 6 = 2 \] \[ 8x = 8 \] \[ x = 1 \] Thus, \(x = 1\) and \(y = -2\). To summarize: \( x = 1 \) \( y = -2 \)