In \( \triangle \mathrm{EFG} \), the measure of \( \angle \mathrm{G}=90^{\circ}, \mathrm{EG}=11, \mathrm{GF}=60 \), and \( \mathrm{FE}=61 \). What ratio represents the tangent of \( \angle \mathrm{E} \) ?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the tangent of \( \angle E \) in triangle \( \triangle EFG \), we can use the definition of tangent in a right triangle, which is the ratio of the length of the opposite side to the length of the adjacent side. In \( \triangle EFG \): - \( \angle G = 90^\circ \) - The length of side \( EF \) is opposite \( \angle E \). - The length of side \( EG \) is adjacent to \( \angle E \). Given: - \( EG = 11 \) (adjacent side) - \( EF = 61 \) (opposite side) So, the tangent of \( \angle E \) is given by: \[ \tan E = \frac{\text{opposite}}{\text{adjacent}} = \frac{EF}{EG} = \frac{61}{11}. \] Thus, the ratio that represents the tangent of \( \angle E \) is \( \frac{61}{11} \).