Write in terms of \( i \). Simplify your answer as much as possible. \[ -\sqrt{-48} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify \(-\sqrt{-48}\), we start by separating the negative sign from the square root: \[ -\sqrt{-48} = -\sqrt{48} \cdot \sqrt{-1} \] We know that \(\sqrt{-1} = i\), so we rewrite the expression as: \[ -\sqrt{48} \cdot i \] Next, we simplify \(\sqrt{48}\). The number 48 can be factored into \(16 \cdot 3\), where 16 is a perfect square: \[ \sqrt{48} = \sqrt{16 \cdot 3} = \sqrt{16} \cdot \sqrt{3} = 4\sqrt{3} \] Putting this back into the expression, we have: \[ -\sqrt{-48} = -4\sqrt{3} \cdot i \] Thus, the simplified answer is: \[ -4\sqrt{3}i \]