Pregunta
upstudy study bank question image url

The half-life of radium is 1690 years. If 80 grams are present now, how much will be present in 940 years? 56.57 grams (Do not round until the final answer. Then round to the nearest thousandth as needed.)

Ask by Evans Lambert. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 940 years, there will be approximately 54.407 grams of radium present.

Solución

To find out how much radium will be present in 940 years, we can use the concept of half-life. The half-life of radium is given as 1690 years, which means that every 1690 years, the amount of radium present will be reduced by half. Given: - Initial amount of radium = 80 grams - Half-life of radium = 1690 years - Time elapsed = 940 years Let's calculate the amount of radium present after 940 years using the formula for radioactive decay: \[ A = A_0 \times \left( \frac{1}{2} \right)^{\frac{t}{T}} \] Where: - \( A \) is the amount of radium present after time \( t \) - \( A_0 \) is the initial amount of radium - \( t \) is the time elapsed - \( T \) is the half-life of radium Substitute the given values into the formula: \[ A = 80 \times \left( \frac{1}{2} \right)^{\frac{940}{1690}} \] Now, let's calculate the amount of radium present after 940 years. Calculate the value by following steps: - step0: Calculate: \(80\left(\frac{1}{2}\right)^{\frac{940}{1690}}\) - step1: Reduce the fraction: \(80\left(\frac{1}{2}\right)^{\frac{94}{169}}\) - step2: Simplify: \(80\times \frac{1}{2^{\frac{94}{169}}}\) - step3: Multiply: \(\frac{80}{2^{\frac{94}{169}}}\) - step4: Simplify: \(\frac{80}{\sqrt[169]{2^{94}}}\) - step5: Multiply by the Conjugate: \(\frac{80\sqrt[169]{2^{75}}}{\sqrt[169]{2^{94}}\times \sqrt[169]{2^{75}}}\) - step6: Multiply the numbers: \(\frac{80\sqrt[169]{2^{75}}}{2}\) - step7: Reduce the fraction: \(40\sqrt[169]{2^{75}}\) The amount of radium present after 940 years is approximately 54.4068 grams. Rounding to the nearest thousandth, the amount of radium present after 940 years is approximately 54.407 grams.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find out how much radium will be present in 940 years, we can use the half-life formula. The formula is: \[ N = N_0 \times \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}} \] Where: - \( N_0 \) is the initial amount of substance (80 grams), - \( t \) is the time passed (940 years), - \( t_{1/2} \) is the half-life (1690 years). Plugging the numbers in: 1. Calculate \( \frac{t}{t_{1/2}} \): \[ \frac{940}{1690} \approx 0.555 \] 2. Then calculate how much of the radium remains: \[ N \approx 80 \times \left( \frac{1}{2} \right)^{0.555} \] \[ N \approx 80 \times 0.759 \approx 60.724 \] So, after rounding to the nearest thousandth, approximately **60.724 grams** of radium will be present after 940 years.

preguntas relacionadas

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad