Pregunta
\begin{tabular}{|c|c|}\hline\( g(x)=\frac{1}{5 x^{3}} \) & \( h(x)=x^{2}|x|+4 \) \\ Even & Even \\ Odd & Odd \\ Neither & Neither \\ \hline\end{tabular}
Ask by May Dunn. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( g(x) \) is Odd and \( h(x) \) is Even.
Solución
Function by following steps:
- step0: Determine if even, odd or neither:
\(h\left(x\right)=x^{2}\left|x\right|+4\)
- step1: Use substitution:
\(h\left(-x\right)=\left(-x\right)^{2}\left|-x\right|+4\)
- step2: Simplify:
\(h\left(-x\right)=x^{2}\left|x\right|+4\)
- step3: Use substitution:
\(h\left(-x\right)=h\left(x\right)\)
- step4: The function is an even function:
\(\textrm{Even}\)
Determine whether the function \( g(x)=\frac{1}{5 x^{3}} \) is even or odd
Function by following steps:
- step0: Determine if even, odd or neither:
\(g\left(x\right)=\frac{1}{5x^{3}}\)
- step1: Use substitution:
\(g\left(-x\right)=\frac{1}{5\left(-x\right)^{3}}\)
- step2: Simplify:
\(g\left(-x\right)=-\frac{1}{5x^{3}}\)
- step3: Use substitution:
\(g\left(-x\right)=-g\left(x\right)\)
- step4: The function is an odd function:
\(\textrm{Odd}\)
Let's analyze the functions \( g(x) \) and \( h(x) \) to determine their properties regarding being even, odd, or neither.
1. **Function \( g(x) = \frac{1}{5 x^{3}} \)**:
- After analysis, we find that \( g(x) \) is **Odd**. This means that \( g(-x) = -g(x) \) for all \( x \) in the domain of \( g \).
2. **Function \( h(x) = x^{2}|x| + 4 \)**:
- After analysis, we find that \( h(x) \) is **Even**. This means that \( h(-x) = h(x) \) for all \( x \) in the domain of \( h \).
### Summary:
- \( g(x) = \frac{1}{5 x^{3}} \) is **Odd**.
- \( h(x) = x^{2}|x| + 4 \) is **Even**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To determine if the functions \( g(x) \) and \( h(x) \) are even, odd, or neither, let's analyze each one. For \( g(x) = \frac{1}{5 x^{3}} \), plugging in \(-x\) gives \( g(-x) = \frac{1}{5 (-x)^{3}} = -\frac{1}{5 x^{3}} = -g(x) \). Hence, \( g(x) \) is an odd function. For \( h(x) = x^{2}|x| + 4 \), we substitute \(-x\) to get \( h(-x) = (-x)^{2}|-x| + 4 = x^{2}(-x) + 4 = x^{2}|-x| + 4 = x^{2}|x| + 4 = h(x) \). Thus, \( h(x) \) is an even function. So, \( g(x) \) is odd and \( h(x) \) is even!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium