Pregunta
Find the area under the curve defined by \( f(x) = 2x + 1 \) between the points \( x = 1 \) and \( x = 3 \).
Ask by Frazier Stuart. in Iran
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The area under the curve \( f(x) = 2x + 1 \) from \( x = 1 \) to \( x = 3 \) is **10 square units**.
Solución
To find the area under the curve defined by \( f(x) = 2x + 1 \) between \( x = 1 \) and \( x = 3 \), we'll use definite integration. Here's a step-by-step approach:
### 1. Set Up the Definite Integral
The area \( A \) under the curve from \( x = a \) to \( x = b \) is given by:
\[
A = \int_{a}^{b} f(x) \, dx
\]
For this problem:
\[
A = \int_{1}^{3} (2x + 1) \, dx
\]
### 2. Find the Antiderivative
First, find the indefinite integral (antiderivative) of \( f(x) \):
\[
\int (2x + 1) \, dx = \int 2x \, dx + \int 1 \, dx = x^2 + x + C
\]
Here, \( C \) is the constant of integration, which cancels out in definite integrals.
### 3. Evaluate the Definite Integral
Apply the limits of integration to the antiderivative:
\[
A = \left[ x^2 + x \right]_{1}^{3} = (3^2 + 3) - (1^2 + 1)
\]
Calculate the values:
\[
A = (9 + 3) - (1 + 1) = 12 - 2 = 10
\]
### 4. Conclusion
The area under the curve \( f(x) = 2x + 1 \) from \( x = 1 \) to \( x = 3 \) is **10 square units**.
---
**Visual Representation:**
If you graph \( f(x) = 2x + 1 \) between \( x = 1 \) and \( x = 3 \), the area under the curve forms a trapezoid. The calculation above confirms that the area of this trapezoid is 10.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the area under the curve defined by \( f(x) = 2x + 1 \) between \( x = 1 \) and \( x = 3 \), we need to evaluate the definite integral: \[ \int_{1}^{3} (2x + 1) \, dx \] First, we calculate the antiderivative of \( f(x) \): \[ F(x) = x^2 + x \] Now, we evaluate \( F(x) \) at the bounds: \[ F(3) = 3^2 + 3 = 9 + 3 = 12 \] \[ F(1) = 1^2 + 1 = 1 + 1 = 2 \] Now, we subtract the two results: \[ \text{Area} = F(3) - F(1) = 12 - 2 = 10 \] Thus, the area under the curve \( f(x) = 2x + 1 \) between \( x = 1 \) and \( x = 3 \) is \( \boxed{10} \).
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium