Pregunta

Find the area under the curve defined by \( f(x) = 2x + 1 \) between the points \( x = 1 \) and \( x = 3 \).

Ask by Frazier Stuart. in Iran
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area under the curve \( f(x) = 2x + 1 \) from \( x = 1 \) to \( x = 3 \) is **10 square units**.

Solución

To find the area under the curve defined by \( f(x) = 2x + 1 \) between \( x = 1 \) and \( x = 3 \), we'll use definite integration. Here's a step-by-step approach: ### 1. Set Up the Definite Integral The area \( A \) under the curve from \( x = a \) to \( x = b \) is given by: \[ A = \int_{a}^{b} f(x) \, dx \] For this problem: \[ A = \int_{1}^{3} (2x + 1) \, dx \] ### 2. Find the Antiderivative First, find the indefinite integral (antiderivative) of \( f(x) \): \[ \int (2x + 1) \, dx = \int 2x \, dx + \int 1 \, dx = x^2 + x + C \] Here, \( C \) is the constant of integration, which cancels out in definite integrals. ### 3. Evaluate the Definite Integral Apply the limits of integration to the antiderivative: \[ A = \left[ x^2 + x \right]_{1}^{3} = (3^2 + 3) - (1^2 + 1) \] Calculate the values: \[ A = (9 + 3) - (1 + 1) = 12 - 2 = 10 \] ### 4. Conclusion The area under the curve \( f(x) = 2x + 1 \) from \( x = 1 \) to \( x = 3 \) is **10 square units**. --- **Visual Representation:** If you graph \( f(x) = 2x + 1 \) between \( x = 1 \) and \( x = 3 \), the area under the curve forms a trapezoid. The calculation above confirms that the area of this trapezoid is 10.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the area under the curve defined by \( f(x) = 2x + 1 \) between \( x = 1 \) and \( x = 3 \), we need to evaluate the definite integral: \[ \int_{1}^{3} (2x + 1) \, dx \] First, we calculate the antiderivative of \( f(x) \): \[ F(x) = x^2 + x \] Now, we evaluate \( F(x) \) at the bounds: \[ F(3) = 3^2 + 3 = 9 + 3 = 12 \] \[ F(1) = 1^2 + 1 = 1 + 1 = 2 \] Now, we subtract the two results: \[ \text{Area} = F(3) - F(1) = 12 - 2 = 10 \] Thus, the area under the curve \( f(x) = 2x + 1 \) between \( x = 1 \) and \( x = 3 \) is \( \boxed{10} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad