Pregunta
upstudy study bank question image url

Select the correct answer. Mr. Walter is remodeling his house and wants to design a rectangular garden in the backyard. The width of the garden, \( W(A) \), in feet, is modeled by this equation, where \( A \) is the area of the garden, in square feet. \( W(A)=\sqrt{A}-1.24 \) What is the average rate of change of the garden's width when the garden's area changes from 289 square feet to 400 square feet? A. The garden's width increases by approximately 0.027 foot for every 1 -square-foot increase in the garden's area. B. The garden's width increases by approximately 0.27 foot for every 1 -square-foot increase in the garden's area. D. The garden's width increases by approximately 15.76 feet for every 1 -square-foot increase in the garden's area. D. The garden's width increases by approximately 18.76 feet for every 1 -square-foot increase in the garden's area. Next

Ask by Guerrero Cruz. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The garden's width increases by approximately 0.027 foot for every 1 square foot increase in the garden's area.

Solución

To determine the average rate of change of the garden's width \( W(A) \) as the area \( A \) changes from 289 square feet to 400 square feet, we can use the formula for the average rate of change: \[ \text{Average Rate of Change} = \frac{W(400) - W(289)}{400 - 289} \] Given the function \( W(A) = \sqrt{A} - 1.24 \): 1. **Calculate \( W(400) \):** \[ W(400) = \sqrt{400} - 1.24 = 20 - 1.24 = 18.76 \text{ feet} \] 2. **Calculate \( W(289) \):** \[ W(289) = \sqrt{289} - 1.24 = 17 - 1.24 = 15.76 \text{ feet} \] 3. **Find the difference in width and area:** \[ \Delta W = 18.76 - 15.76 = 3 \text{ feet} \] \[ \Delta A = 400 - 289 = 111 \text{ square feet} \] 4. **Calculate the average rate of change:** \[ \text{Average Rate of Change} = \frac{3}{111} \approx 0.027 \text{ feet per square foot} \] **Therefore, the correct answer is:** **A. The garden's width increases by approximately 0.027 foot for every 1 -square-foot increase in the garden's area.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the average rate of change of the garden's width \( W(A) \) as the area changes from 289 square feet to 400 square feet, we first calculate \( W(289) \) and \( W(400) \): For \( A = 289 \): \[ W(289) = \sqrt{289} - 1.24 = 17 - 1.24 = 15.76 \] For \( A = 400 \): \[ W(400) = \sqrt{400} - 1.24 = 20 - 1.24 = 18.76 \] Now, calculate the average rate of change: \[ \text{Average rate of change} = \frac{W(400) - W(289)}{400 - 289} = \frac{18.76 - 15.76}{111} = \frac{3}{111} \approx 0.027 \] So, the correct answer is A. The garden's width increases by approximately 0.027 foot for every 1-square-foot increase in the garden's area. Have you ever noticed how gardens can transform a space? With a rectangular layout, Mr. Walter's garden could become a serene haven filled with vibrant flowers or fresh vegetables! Plus, knowing how width and area relate can help in maximizing that outdoor space. When diving into garden design, consider not just dimensions but also sunlight, water access, and soil type. Many first-time gardeners miscalculate their planting layout or plant too closely together. Remember to leave ample space between plants for growth!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad