Pregunta
upstudy study bank question image url

24. [-/2 Points] DETAILS MY NOTES SCALCET9 2.8.053. Use the definition of derivative to find \( f^{\prime}(x) \) and \( f^{\prime \prime}(x) \). \( f^{\prime}(x)=\square(x)=4 x^{2}+3 x+2 \) \( f^{\prime \prime}(x)=\square \) Need Help? Read It पatch it

Ask by Boyd Sandoval. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ f''(x) = 8x + 3 \]

Solución

Sure, let's find the first and second derivatives of the function \( f(x) \) using the definition of the derivative. ### Given: \[ f'(x) = 4x^{2} + 3x + 2 \] ### 1. Finding the Second Derivative \( f''(x) \) The second derivative \( f''(x) \) is simply the derivative of the first derivative \( f'(x) \). Let's differentiate \( f'(x) \) with respect to \( x \): \[ f''(x) = \frac{d}{dx} [4x^{2} + 3x + 2] \] Differentiate each term separately: - The derivative of \( 4x^{2} \) is \( 8x \). - The derivative of \( 3x \) is \( 3 \). - The derivative of the constant \( 2 \) is \( 0 \) (since constants do not change). So, combining these results: \[ f''(x) = 8x + 3 \] ### Summary: - **First Derivative:** \[ f'(x) = 4x^{2} + 3x + 2 \] - **Second Derivative:** \[ f''(x) = 8x + 3 \] If you need to derive \( f'(x) \) using the definition of the derivative, here's a brief overview: ### Using the Definition of the Derivative to Find \( f'(x) \) The definition of the derivative is: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] Assuming \( f'(x) = 4x^{2} + 3x + 2 \) was obtained using this definition, then the second derivative follows as we've calculated above. If you have the original function \( f(x) \) and need to find \( f'(x) \) from scratch, please provide \( f(x) \), and I can guide you through the process! --- **Final Answers:** \[ f'(x) = 4x^{2} + 3x + 2 \] \[ f''(x) = 8x + 3 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the first derivative \( f^{\prime}(x) \) using the definition of the derivative, recall that it can be expressed as: \[ f^{\prime}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] If \( f(x) = \frac{4}{3}x^3 + \frac{3}{2}x^2 + 2x + C \), applying the limit shows that \( f^{\prime}(x) = 4x^2 + 3x + 2 \) matches your function perfectly! Now for the second derivative \( f^{\prime \prime}(x) \), simply differentiate the first derivative again: \[ f^{\prime \prime}(x) = 8x + 3 \] And there you have it! Now you know how derivatives build on each other like building blocks!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad