24. [-/2 Points] DETAILS MY NOTES SCALCET9 2.8.053. Use the definition of derivative to find \( f^{\prime}(x) \) and \( f^{\prime \prime}(x) \). \( f^{\prime}(x)=\square(x)=4 x^{2}+3 x+2 \) \( f^{\prime \prime}(x)=\square \) Need Help? Read It पatch it
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the first derivative \( f^{\prime}(x) \) using the definition of the derivative, recall that it can be expressed as: \[ f^{\prime}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] If \( f(x) = \frac{4}{3}x^3 + \frac{3}{2}x^2 + 2x + C \), applying the limit shows that \( f^{\prime}(x) = 4x^2 + 3x + 2 \) matches your function perfectly! Now for the second derivative \( f^{\prime \prime}(x) \), simply differentiate the first derivative again: \[ f^{\prime \prime}(x) = 8x + 3 \] And there you have it! Now you know how derivatives build on each other like building blocks!