\( \sum _{k=1}^{n-1}(3k^{2}+k) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To evaluate the sum \( \sum_{k=1}^{n-1} (3k^2 + k) \), we can break it down into two separate sums: \[ \sum_{k=1}^{n-1}(3k^2 + k) = \sum_{k=1}^{n-1} 3k^2 + \sum_{k=1}^{n-1} k \] 1. The first sum is \( \sum_{k=1}^{n-1} 3k^2 \): \[ = 3 \sum_{k=1}^{n-1} k^2 \] The formula for the sum of the first \( m \) squares is \( \frac{m(m+1)(2m+1)}{6} \). Therefore, when \( m = n-1 \): \[ \sum_{k=1}^{n-1} k^2 = \frac{(n-1)n(2(n-1)+1)}{6} = \frac{(n-1)n(2n-1)}{6} \] Thus, \[ 3 \sum_{k=1}^{n-1} k^2 = 3 \cdot \frac{(n-1)n(2n-1)}{6} = \frac{(n-1)n(2n-1)}{2} \] 2. The second sum is \( \sum_{k=1}^{n-1} k \): \[ = \frac{(n-1)n}{2} \] Finally, combine the two results: \[ \sum_{k=1}^{n-1} (3k^2 + k) = \frac{(n-1)n(2n-1)}{2} + \frac{(n-1)n}{2} \] Factor out \( \frac{(n-1)n}{2} \): \[ = \frac{(n-1)n}{2} \left( (2n-1) + 1 \right) = \frac{(n-1)n(2n)}{2} = (n-1)n^2 \] Therefore, the sum \( \sum_{k=1}^{n-1} (3k^2 + k) \) is: \[ \boxed{(n-1)n^2} \]