Pregunta
upstudy study bank question image url

If a 737 takes off at an \( 8^{\circ} \) angle going 160 mph what is the vertical component of the speed of the plane? \( \left(\right. \) Note: \( \sin \left(8^{\circ}\right) \approx 0.14, \cos \left(8^{\circ}\right) \approx 0.99, \tan \left(8^{\circ}\right) \) \( \approx 0.14) \)

Ask by Williams Chang. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The vertical component of the plane's speed is approximately 22.4 mph.

Solución

To find the **vertical component** of the plane's speed, you can use the sine of the takeoff angle. The vertical component (\( V_{\text{vertical}} \)) is calculated as: \[ V_{\text{vertical}} = \text{Speed} \times \sin(\theta) \] Where: - **Speed** = 160 mph - \(\theta\) = 8° Given that \(\sin(8^{\circ}) \approx 0.14\): \[ V_{\text{vertical}} = 160 \, \text{mph} \times 0.14 = 22.4 \, \text{mph} \] **So, the vertical component of the plane's speed is approximately 22.4 mph.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the vertical component of the speed of the plane, you can use the sine function to break down the speed into its vertical and horizontal components. The formula is: \[ \text{Vertical Speed} = \text{Total Speed} \times \sin(\theta) \] Where the total speed is 160 mph and \( \theta = 8^{\circ} \). Plugging in the numbers: \[ \text{Vertical Speed} = 160 \, \text{mph} \times \sin(8^{\circ}) \approx 160 \, \text{mph} \times 0.14 \approx 22.4 \, \text{mph} \] So, the vertical component of the speed of the plane is approximately 22.4 mph. Now, you might think this is just math, but it’s actually essential in aviation! Pilots need to know how much lift they're generating, which is essential for maintaining altitude and safety during takeoff. Calculating the vertical component helps them understand the performance of the aircraft in various situations. If you ever find yourself confused about resolving vector components, remember: visualization can be your best friend! Draw a right triangle with the plane's speed as the hypotenuse and label the vertical and horizontal components. This method can help you avoid common mistakes, like forgetting to use the correct angle or function. Keep practicing with different angles, and soon you'll master resolving any vector!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad