asic Concepts 5.2 Quiz \[ \begin{array}{l}f(x)=\frac{x+4}{x+7} \\ \text { Match the rational function with the appropriate description. The vertical asymptote is } x=-4 \text {. } \\ \text { B. The vertical asymptote is } x=-7 \text {. } \\ \text { C. The } x \text {-intercept is }(7,0) \text {. } \\ \text { D. The } y \text {-intercept is }(0,4) \text {. }\end{array} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Let's dive into the fascinating world of rational functions! When we analyze the function \( f(x) = \frac{x+4}{x+7} \), we get some insightful characteristics. The vertical asymptote occurs where the denominator equals zero, so for \( x+7=0 \) or \( x=-7 \), we've found our vertical asymptote! So, the correct match is **B. The vertical asymptote is \( x=-7 \).** Now let’s check for the x-intercept! This occurs where the numerator equals zero. Setting \( x+4=0 \) leads to \( x=-4 \). So the x-intercept is actually at the point \((-4, 0)\), not \((7, 0)\). As for the y-intercept, substituting \( x = 0 \) in the function gives us \( f(0) = \frac{0+4}{0+7} = \frac{4}{7} \), meaning the y-intercept is \( (0, \frac{4}{7}) \). So, for a bit more fun: rational functions tell the wild tales of asymptotes and intercepts! 🥳