Pregunta
upstudy study bank question image url

(d) Suppose that a cell dehydration model satisfies the differential equation, \[ \frac{d W}{d t}=-k W^{\frac{2}{3}} \] Assume that the volume of water in the cell initially is \( W(0)=8 \mathrm{~mm}^{3} \). Also, assume that the volume water has decreased to \( W(6)=1 \mathrm{~mm}^{3} \) after 6 hours. (i) Solve the differential equation by separating like variables.

Ask by Santiago Robbins. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the differential equation is: \[ W(t) = \left(\frac{-\frac{1}{2}t + 6}{3}\right)^3 \]

Solución

To solve the differential equation \[ \frac{d W}{d t} = -k W^{\frac{2}{3}} \] we will use the method of separation of variables. Here are the steps: 1. **Separate the variables**: We want to isolate \( W \) on one side and \( t \) on the other side. We can rewrite the equation as: \[ \frac{d W}{W^{\frac{2}{3}}} = -k \, dt \] 2. **Integrate both sides**: Now we will integrate both sides. The left side will be integrated with respect to \( W \) and the right side with respect to \( t \): \[ \int \frac{d W}{W^{\frac{2}{3}}} = \int -k \, dt \] 3. **Calculate the integrals**: The integral on the left can be calculated as follows: \[ \int W^{-\frac{2}{3}} \, dW = \frac{W^{\frac{1}{3}}}{\frac{1}{3}} = 3 W^{\frac{1}{3}} + C_1 \] The integral on the right side is: \[ -k \int dt = -kt + C_2 \] 4. **Combine the results**: We can combine the results of the integrals: \[ 3 W^{\frac{1}{3}} = -kt + C \] where \( C = C_2 - C_1 \). 5. **Solve for \( W \)**: To express \( W \) in terms of \( t \), we rearrange the equation: \[ W^{\frac{1}{3}} = \frac{-kt + C}{3} \] Now, we will cube both sides to solve for \( W \): \[ W = \left(\frac{-kt + C}{3}\right)^3 \] Next, we will use the initial conditions to find the constants \( k \) and \( C \). Given the initial condition \( W(0) = 8 \, \text{mm}^3 \): \[ 8 = \left(\frac{C}{3}\right)^3 \] This implies: \[ C = 3 \cdot 8^{\frac{1}{3}} = 3 \cdot 2 = 6 \] Now we have: \[ W = \left(\frac{-kt + 6}{3}\right)^3 \] Next, we will use the second condition \( W(6) = 1 \, \text{mm}^3 \): \[ 1 = \left(\frac{-6k + 6}{3}\right)^3 \] Taking the cube root of both sides gives: \[ \frac{-6k + 6}{3} = 1 \] Multiplying through by 3: \[ -6k + 6 = 3 \] Solving for \( k \): \[ -6k = 3 - 6 \implies -6k = -3 \implies k = \frac{1}{2} \] Now we have both constants \( k \) and \( C \). The final solution to the differential equation is: \[ W(t) = \left(\frac{-\frac{1}{2}t + 6}{3}\right)^3 \] This is the solution to the differential equation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the differential equation \( \frac{d W}{d t} = -k W^{\frac{2}{3}} \) by separating variables, we can rearrange it as follows: \[ \frac{dW}{W^{\frac{2}{3}}} = -k \, dt \] Next, we integrate both sides. The left side requires the integral of \( W^{-\frac{2}{3}} \): \[ \int W^{-\frac{2}{3}} \, dW = \int -k \, dt \] The integral of \( W^{-\frac{2}{3}} \) is \( \frac{W^{\frac{1}{3}}}{\frac{1}{3}} = 3W^{\frac{1}{3}} + C \), where \( C \) is the constant of integration. The integral of \( -k \, dt \) gives \( -kt + C_1 \), so we can write: \[ 3W^{\frac{1}{3}} = -kt + C_1 \] Now, we will determine the constant using the initial condition \( W(0) = 8 \) mm³: \[ 3(8^{\frac{1}{3}}) = C_1 \implies C_1 = 3 \cdot 2 = 6 \] Thus, our equation becomes: \[ 3W^{\frac{1}{3}} = -kt + 6 \] Next, we apply the second condition \( W(6) = 1 \) mm³ to find \( k \): \[ 3(1^{\frac{1}{3}}) = -6k + 6 \] \[ 3 = -6k + 6 \implies -6k = 3 - 6 \implies -6k = -3 \implies k = \frac{1}{2} \] Now substituting \( k \) back into our equation, we have: \[ 3W^{\frac{1}{3}} = -\frac{1}{2}t + 6 \] To express \( W \), we solve for \( W \): \[ W^{\frac{1}{3}} = -\frac{1}{6}t + 2 \] \[ W = \left(-\frac{1}{6}t + 2\right)^3 \] Thus, the solution to the differential equation is: \[ W(t) = \left(-\frac{1}{6}t + 2\right)^3 \]

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad